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Abstract 

Breast Cancer is the most common cancer among women worldwide. The most widely 

used method for diagnosis of this types of cancer is the Histopathological analysis. Many 

researchers focused on developing computer-aided diagnosis system to support pathologist 

experience for correct diagnoses. This paper proposes an improved model for CNN using the 

publically available (BreakHis dataset) to categorize breast cancer histopathological images. The 

proposed model uses a 2-dimensional discrete wavelet transform (DWT) for feature extraction. 

Then, the approximate sub-band will be used for training and testing of the CNN instead of the 

original raw images. It is observed that the use of DWT features attain better results than the use 

of raw images itself. For instance, proposed MDWT2 CNN method has showed a better 

performance compared to the previous published of binary classification task with a performance 

range between 88.9% and 89.9% at image levels. A further investigation was implemented using 

the step scheduler with increasing mini-batch size for updating Stochastic Gradient Descent 

(SGD) network parameters at the early stages of the training phase. The results show that the 

proposed CNN based DWT model achieves the highest accuracy of 90.8% at the patient level 

and 89.1% at image level, thus outperforms all the previous published approaches. Therefore, the 
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researchers could suggest using the proposed MDWT2 CNN model for future investigation of 

breast cancer diseases. 

Keywords: Breast Cancer; Convolutional Neural Networks; Discrete Wavelet Transform; and 

Stochastic Gradient Descent 

 

Introduction 

Currently, breast cancer is a substantial public health problem and the second cause of 

death for women around the world (Boyle, P. et al, 2008). Among many molecular markers, the 

most widely used method for diagnosis of this types of cancer is the Histopathological analysis. 

Pathologists use visual inspection of the samples under a microscope for grading and staging the 

Breast Cancer diagnosis (Lakhani, S. R., 2012). Histopathological analysis done by the 

pathologists is a time-consuming task with an accuracy rate depends on the experience of the 

pathologist. For this reason, Computer-Aided Detection/Diagnosis (CAD) systems were needed 

to assist the pathologists in the diagnosis process. Recently, the development in machine learning 

and digital image processing fields allow researchers to construct an advanced CAD system that 

supports pathologists in their diagnosis. Building an automated image processing system for 

breast cancer diagnosis has been considered a challenging task for researchers in the last years 

due to the complexity of the images (Das, A. et al, 2020). A well-designed CAD system for 

histopathological image classification can improve the diagnosis accuracy and make the 

pathologists more productive, objective and consistent in diagnosis (Araújo, T. et al, 2017). 

Filipczuk P. et al, (2013), analyzed images of fine needle biopsies using a BC diagnosis 

system with a four different classifiers and reported performance of 98% on 737 images. 

Similarly, George Y. M.et al, (2013), presented a BC diagnosis system based on the nuclei 

segmentation of cytological images using neural networks and support vector machines reporting 

accuracy ranging from 76% to 94% on 92 images. These recent works focused on a small data 

set and Whole-Slide Imaging (WSI) imaging which still has many drawbacks, including the 

complexity and many unsolved technologies related concerns (Evans, A. J, 2015). 

Spanhol F. A. et al, (2016), introduced an extensive histopathological breast data set of 

7,909 images obtained from 82 patients. The authors evaluated six different textural descriptors 
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and different classifiers and achieved accuracy ranging from 80% to 85%, depending on the 

image magnification factor. Four different classifiers 1-nearest neighbor (1-NN), quadratic linear 

analysis (QDA), support vector machines (SVM), and random forests (RF) were used. The 

higher recognition rate (85.1%) was achieved for (200X factor) by the SVM classifier trained 

with the Parameter-Free Threshold Adjacency Statistics (PFTAS) descriptors. 

The Convolutional Neural Network (CNN) is widely used in many pattern recognition 

problems (Niu, X. X. et al, 2012). In Spanhol F. A. et al, (2016), assessed the use of deep 

learning approach merging different CNNs using simple fusion rules and reported an 

improvement in classification accuracy of 6% when compared to the experiments reported in 

(Spanhol F. A. et al, 2016). Besides, the authors in Spanhol F. A. et al, (2017), used DeCAF 

features with previously trained CNN achieving an accuracy of 84% on breast cancer images. 

Another deep classifier is represented by the supervised intra-embedding of Fisher vectors with a 

multilayer neural network model, followed by a CNN in (Song Y. et al, 2017, Mewada, H., 

2024). 

Even though Development in machine learning in the classification of the 

histopathological images for breast cancer, the over-fitting of the system due to increase of CNN 

parameters is still a challenging problem. Although increasing the data set of images overcomes 

the over-fitting problem, it increases the complexity of the system and consumes time. The main 

aim of this paper is to reduce the complexity of an existing CNN architecture model by using the 

approximation sub-band of the wavelet domain instead of the image itself. This sub-band reduces 

the size of input images which reduces the number of image patches from the dataset. 

 

Methodology 

Microscopic images of histopathologic sections is usually classified visually. Thus, image 

classification is a challenging problem due to presence of a large amount of geometrical 

structures and complex textures. In deep learning, high-level features can be represented by 

using multiple levels of representation of the data (LeCun Y. et al, 2015). Among other deep 

learning techniques, Convolutional Neural Networks (CNNs) have achieved improved results in 

image classification problems in analyzing of medical images (Yamashita R. et al, 2018). The 
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CNN includes multi-layers which has the ability to be trained, arranged on each other. Then, sets 

of arrays named feature maps administered as a classifier which represent both input and output 

for every stage (Sakkari, M. et al, 2020). Mainly, CNN architectures consist of three types of 

layer: convolutional layer, pooling layer, and fully connected layer. The design of CNN could be 

set depending on the types and numbers of layers included, depending on the application or data 

(Zainel, Q.M., et.al, 2021). Since the data set consisting of complex colored images, a CNN with 

multiple convolutional and fully connected layers was required. The CNN layers architecture 

presented in this paper is shown in detail in Table 1. 

Table 1.The CNN Layers 

CNN Layer Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Layer Type CONV + POOL CONV + POOL CONV + POOL FC FC 

Conv Feature maps 32 32 64 - - 

Conv Filter Size 5 x 5 5 x 5 5 x 5 - - 

Conv Output Size 60 x 60 x 32 27 x 27 x 32 11 x 11 x 64 - - 

Conv Stride 1 x 1 1 x 1 1 x 1 - - 

Pooling Type Max Average Average - - 

Pooling Size 3 x 3 3 x 3 3 x 3 - - 

Pooling Stride 2 x 2 2 x 2 2 x 2 - - 

Padding Size 2 x 2 2 x 2 2 x 2 - - 

Pooling Output Size 31 x 31 x 32 15 x 15 x 32 7 x 7 x 64 - - 

FC Input Size - - - 3136 64 

FC Output Size - - - 64 2 

 

Convolution with a collection of filters improves the representation of the features. At the 

first layer, simple primitive features computed across all the input channels. Then, a pooling 

layer will be place in between two succeeding convolutional layers to reduce the size, which 
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helps to prevent over-fitting. Although using max function for pooling layer has been shown 

good results, the average function can also be used. Neurons of fully connected layer will be 

fully connected to all other activations from the previous layer. The last fully connected layer 

will hold the probability distribution of the classes (Nannia, L. et al, 2018). 

The Discrete Wavelet Transform (DWT), for a signal x, which is mathematically 

expressed in equation below, is calculated by passing it through a low pass and high pass filters 

separately.  

 

Where, the first step represent passing the signal 𝑥 to a low pass filter 𝑔, while, the 

second step is passing the signal with a high pass filter ℎ. These two filters should be connected 

to each other in a method named a quadrature mirror filter. According to Nyquist’s rule, the 

outputs of the quadrature mirror filter will be halved (Fadhil, A. F., 2014). Usually, the 1-

dimensional signal will passed twice to generate a 2-dimensional signals, such as images. The 

image is passed through a low pass and high pass filters to acquire two sub-bands, namely, 

approximate and detail sub-bands. The detail sub-band include of vertical, horizontal, and 

diagonal sub-bands. 

The proposed method deals with small image patches instead of large images to reduce 

the complexity and the extensive set of parameters of the system. Also, the time that is necessary 

for training the parameters was reduced. The image sizes reduced to half first then patches were 

extracted by a sliding window with 25% of overlapping between patches resulting of 28 patches 

by each image. Also, the proposed model implements data normalization. This is achieved by 

subtracting the mean image of the training set from every input image. The patch images were 

passed through 2-dimensional DWT, and only the approximate sub-bands were selected. The 

approximate sub-band contains most of the information from the image and can be used instead 

of the original image pixels in many applications. The approximate sub-band will be used instead 

of the raw pixel values of the original image to reduce the size of the images, which reduces the 

time consumption of the system. On the other hand, Stochastic Gradient Descent (SGD) method 
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(Bottou, L., 2012), with back-propagation to compute gradients and different values for learning 

rate and mini-batch size was used to change the network’s parameters every time (Abdulghani, 

S., et.al., 2020).  

Finally, in the classification stage, results for each image can be conducted by combining 

the patch results. The grid patches of the images were extracted and allowed 25% of overlapping. 

This is the same strategy used for the training which in practice proved a sensible balance 

between classification performance and computational cost. 

Experimental Results and Discussions 

About 7,909 microscopic biopsy images from the BreaKHis database (Spanhol, F. A. et 

al, 2016) collected from 82 patients containing both benign and malignant breast tumors. The 

benign class consists of 4 different types: adenosis (A), fibroadenoma (F), phyllodes tumor (PT), 

and tubular adenoma (TA); and the malignant class also consists of 4 different types: ductal 

carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma (MC), and papillary carcinoma 

(PC). The main aim in this work is classifying images into benign or malignant cases at patch, 

image, and patient levels. Besides, five-fold cross-validation method at the patient level were 

used to evaluate results. Furthermore, five splits sets of dataset has been initially separated for 

cross- validation. Then, each split set divided into 80% of images for training and 20% of images 

for testing. Finally, the original dataset split patient wise were used to ensure that the classifier 

covered all patients including unseen patients. The researchers investigated the effect of 

changing mini-batch size and the learning rate parameters of the Stochastic Gradient Descent 

network. 

The results of fixed, decreasing and increasing the mini-batch numbers are presented in 

Tables 2, 3 and 4, respectively. In Table 2, the mini-batch size was fixed at a value of (100) 

every 5 epochs with a learning rate of (10−2). Then in Table 3, the mini-batch size was started 

with a value of (100) then decreased by (25) each 5 epochs with a learning rate of (10−2). While 

in Table 4, the mini-batch size is increased by (50) every 5 epochs. 
  

Table 2: The Average Recognition Accuracy presented for MDWT2 method (fixed mini-batch size) 
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MF Max 

Epoch Mini-batch Learning 
Rate 

Recognition Rate 
Patch Image Patient 

 
40 X 

5 100 10−2 81.54 82.68 84.06 
10 100 10−2 84.27 85.52 87.99 
15 100 10−2 82.58 83.52 86.03 
20 100 10−2 85.73 87.19 87.99 

 
 

Table 3: The Average Recognition Accuracy presented for MDWT2 method (decreased mini-batch size) 
 

MF Max 
Epoch Mini-batch Learning 

Rate 
Recognition Rate 

Patch Image Patient 

 
40 X 

5 100 10−2 81.54 82.69 84.07 
10 75 10−2 83.56 84.17 86.03 
15 50 10−2 83.23 84.71 86.03 
20 25 10−2 84.06 85.26 85.91 

 
Table 4: The Average Recognition Accuracy presented for MDWT2 method (increased mini-batch size) 

 
MF Max 

Epoch Mini-batch Learning 
Rate 

Recognition Rate 
Patch Image Patient 

 
40 X 

5 100 10−2 81.54 82.69 84.07 
10 150 10−2 84.39 86.12 87.99 
15 200 10−2 83.72 85.79 87.87 
20 250 10−2 84.27 85.64 87.99 

 
 

From Tables 2, 3 and 4, fixed mini-batch size overcome the results of both increasing and 

decreasing mini-batch size. Therefore, we could suggest using the fixed mini-batch size for 

further investigation. Furthermore, the impact of the learning rate on model performance is 

investigated. A dynamic learning rate strategy was suggested and conducted in this research. The 

step scheduler is the most used for scheduling the SGD learning rates. In the step scheduler, four 

hyper-parameters need to be fine-tuned carefully: initial learning rate, training epochs, decay 

stages, and decay rate. It updates the learning rate every specified number of epochs by 

multiplying with a specific factor. In Table 5, the step scheduler starts the learning rate from 

(10−2), then drops by a factor (10−1) every 5 epochs with mini-batch size = 100. 

 

Table 5: The Average Recognition Accuracy presented for MDWT2 method (dynamic learning rate) 
 

MF Max 
Epoch Mini-batch Learning 

Rate 
Recognition Rate 

Patch Image Patient 
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40 X 

5 100 10−2 81.54 82.69 84.07 
10 100 10−3 84.47 85.50 85.91 
15 100 10−4 84.44 85.20 87.99 
20 100 10−5 84.33 85.13 87.99 

 
 

In Table 5, the accuracy rates decrease after 10 or 15 epochs when decreasing the 

learning rate. These results state that using a smaller learning rate every 5 epochs is not enough 

for the model to learn effectively with a fixed mini-batch number. These results lead to an 

assumption that changing the learning rate does not work correctly alone while fixing the mini-

batch value. Therefore, a different scenario was used in Table 6 by increasing the mini-batch size 

with a factor of (100) and using the same previous step scheduler every 10 epochs. 

Table 6: The Average Recognition Accuracy presented for MDWT2 method (increasing mini-batch size with 

dynamic learning rate) 
 

MF Max 
Epoch Mini-batch Learning 

Rate 
Recognition Rate 

Patch Image Patient 

 
40 X 

5 100 10−2 81.54 82.69 84.07 
10 100 10−2 84.27 85.52 87.99 
15 200 10−3 84.91 86.72 89.95 
20 200 10−3 85.36 89.10 90.81 

 

Results from Table 6 show that when mini-batch size changes in conjunction with 

learning rate, the combination yields better results. The accuracy ranges from approximately 

85%, 89% and 91% for Patch, Image and Patient recognition rates, respectively.  

We Also compared the results presented in this paper, Table 6 , with the results of 

previous works (Spanhol, F. A., et al  2016 A), (Spanhol, F. A. et al , 2016 B), (Spanhol, F. A. et 

al  2017), and (Song Y., 2017) at both patient and image levels. Table 7 shows the average 

accuracy of the proposed methods at patient and image levels for five trails using five-fold cross-

validation. The proposed MDWT2 with step error scheduler achieves the highest accuracy of 

90.8% at the patient level and 89.1% at image level, thus outperforms all the previous published 

approaches. 

Table 7: Mean Accuracy rates for different strategies 
 

Level Strategy MF of 40X 
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Patient 

Level 

PFTAS (1-NN) [ 8 ] 80.9 

PFTAS (QDA) [ 8 ] 83.8 

PFTAS (RF) [ 8 ] 81.8 

PFTAS (SVM) [ 8 ] 81.6 

CNN (Sum) [10] 88.4 

CNN (Product) [10] 89.2 

CNN ( Max) [10] 90.0 

CNN + DeCAF [11] 88.5 

Intra-embedding Fisher Vectors 
[12] 

90.2 

Proposed (MDWT2) 90.8 

 
 
 

Image 

Level 

CNN (Sum) [10] 85.4 

CNN (Product) [10] 85.5 

CNN ( Max) [10] 85.6 

CNN + DeCAF [11] 88.0 

Intra-embedding Fisher Vectors 
[12] 

87.7 

Proposed (MDWT2) 89.1 
 

 

Conclusions  

In this paper, a new CNN based 2-dimensional DWT model (MDWT2) was proposed and 

evaluated on BreaKHis dataset. The main observation was using the DWT features can attain 

better results than the use of raw images on the same CNN architecture. The performance of the 

suggested method was assessed in patient, image, and patch based levels. Furthermore, The SGD 

network parameters were changed to investigate the performance of the system at the early 

stages of the training phase. The step scheduler for fine-tuning the learning rate parameter for 

SGD algorithm with increasing mini-batch size presented the best accuracy results with the 

proposed algorithm. 

The experimental results presented in patient levels using five-fold cross-validation 

shows improvement of average recognition accuracy on the BreakHis dataset against the other 

machine learning models tested on the same dataset. Also, the proposed MDWT2 CNN method 

has showed a better performance compared to the previous published of binary classification task 
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with a performance range between 88.9% and 89.9% at image levels. Therefore, we could 

suggest using the proposed MDWT2 CNN model for future investigation of breast cancer 

diseases. 
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