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Abstract 
Serverless computing has transformed cloud-based and event-driven applications by introducing the 
Function-as-a-Service (FaaS) model. This model offers key benefits, including greater abstraction 
from underlying infrastructure, simplified management, flexible pay-as-you-go pricing, and 
automatic scaling and resource optimization. However, managing resources effectively in serverless 
environments remains challenging due to the inherent variability and unpredictability of workload 
demands. This paper introduces an Adaptive Resource Scaling Algorithm (ARSA) tailored for 
serverless applications. ARSA leverages the Auto-Regressive Integrated Moving Average (ARIMA) 
model to forecast workload demands. Using these predictions alongside a strategy focused on 
maintaining service quality, ARSA dynamically adjusts the number of container instances needed. 
The goal is to optimize resource usage while minimizing the occurrence of cold starts. We validated 
ARSA using a real-world dataset from Microsoft Azure Functions. Our evaluation compared ARSA 
against fixed instance settings (one, two, and three instances) and the standard Kubernetes Horizontal 
Pod Auto-scaler (HPA). The results demonstrate that ARSA outperforms these baseline methods by 
significantly reducing number of cold starts, improving CPU utilization, decreasing memory costs, 
reducing the number of rejected requests, and enhancing response times. These improvements 
underscore ARSA’s potential in efficiently managing dynamic workloads and enhancing the 
performance of serverless environments. 

Keywords: Serverless Computing, Function as a Service, Resource Provisioning, Cold Start Delay, 
Auto-Scaling, ARIMA, Workload Prediction. 

I. Introduction 
With the rise of virtualization technologies, cloud computing has become a key part of our daily 

activities [1]. In 2014, Amazon introduced serverless computing, which changed the way we think 
about computational models. This approach helps reduce operational costs and simplifies the 
complexities involved in system development, making businesses more agile and responsive. By 
handling tasks like infrastructure provisioning, deployment, and management, cloud providers take 
on the burdens that companies traditionally faced, allowing them to focus more on their main 
business goals [2], [3], [4]. Serverless computing also benefits developers by letting them 
concentrate on building functional logic without worrying about managing the infrastructure. This 
shift not only streamlines the development process but also speeds up the deployment and scalability 
of applications, fostering innovation and competitive advantages in businesses. 
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Function as a Service (FaaS) has gained popularity as an emerging trend in cloud computing, 
largely due to its event-driven, serverless nature. This model is increasingly used across industries, 
supported by leading cloud providers like AWS Lambda [5], Google Cloud Functions (GCF) [6], 
IBM Cloud Functions [7], and Microsoft Azure Functions [8]. The popularity of FaaS reflects the 
growing demand for solutions that are scalable, flexible, and cost-effective, capable of handling 
dynamic workloads and changing business needs. The wide availability of FaaS options also 
indicates the maturity of the serverless computing ecosystem, offering developers a variety of tools 
and platforms to suit their needs. As more organizations incorporate FaaS into their cloud strategies, 
the field of cloud computing continues to grow and evolve. 

Despite its advantages, serverless computing has some challenges, particularly with cold start 
delays, which occur when there is a lag in setting up the function’s execution environment [9]. While 
serverless functions can "scale to zero" to save resources when idle, this feature can lead to increased 
latency when functions are restarted, as seen in cold starts [10], [11]. Research shows that cold starts 
can sometimes be significantly longer than the actual execution time, up to 59 times in extreme cases 
[12]. Therefore, addressing cold start delays is crucial for maintaining optimal performance and user 
satisfaction in serverless systems. 

Moreover, serverless computing's automatic scaling can lead to resource shortages during 
sudden demand spikes, worsening the cold start issue. Some serverless platforms try to address this 
by capturing hidden resource information to optimize scaling. For example, the Horizontal Pod Auto-
scaler (HPA) is a popular tool used in Kubernetes for automatically adjusting resources [13]. Other 
frameworks, such as Kubeless, use resource data and function settings to better manage resource use 
and avoid performance bottlenecks during workload changes. Effective scaling strategies are critical 
for optimizing resources and managing the operational challenges in serverless environments. 

In this paper, we propose an Adaptive Resource Scaling Algorithm, ARSA, using a Time Series-
based model called Auto-Regressive Integrated Moving Average (ARIMA). This model predicts 
workload demands based on historical function invocation data, allowing for proactive adjustments 
in resource allocation to better handle workload fluctuations. Our approach focuses on maximizing 
resource efficiency by predicting future needs and making timely scaling adjustments. To test our 
algorithm, we conducted comparisons with existing methods, including the Horizontal Pod Auto-
scaler (HPA) in Kubernetes and a fixed container setup, using real-world data from Microsoft Azure 
Functions. The results highlight the strengths of our proposed method in managing resource 
allocation, reducing cold starts, improving CPU utilization, and minimizing rejected requests. 

In summary, the key contributions of this paper are: 

• We propose a Time Series-based model using ARIMA for predicting future function 
invocations and scaling resources accordingly. 

• We thoroughly evaluate our approach against Kubernetes' HPA and a fixed container setup 
using a real-world dataset from Microsoft Azure Functions, focusing on metrics like cold start 
frequency, average CPU usage, and request rejections. 

• Our findings demonstrate the effectiveness of our method in optimizing resource 
management, reducing cold starts, enhancing CPU utilization, and lowering the number of 
rejected requests. 

The rest of this paper is organized as follows: Section II reviews related work, Section III 
identifies the research gaps, Section IV explains the cold start problem, Section V outlines our 
proposed method, Section VI discusses the experimental results, and Section VII concludes the 
paper. 



The 3rd International Conference on Engineering and innovative Technology ICEIT2024 
Salahaddin University-Erbil, 30-31 October 2024. 

 
 

3 
 

II. Related Work 
Previous research has made significant progress in improving serverless computing, especially 

in tackling the cold start issue [12], [14]. This section reviews various studies that have explored 
autoscaling techniques to predict the number of pre-warmed containers, helping to reduce cold start 
delays in serverless environments. 

Somma et al. [15] developed and tested a container-based provisioning system for cloud 
computing. Their approach addresses two key areas: the deployment of containers and the 
management of container scaling. They introduced a resource management strategy that uses both 
admission control and autoscaling, driven by a Q-learning algorithm. This algorithm adapts based on 
the load on physical processors assigned to containers, without depending on the specific computing 
environment. Similarly, Schuler et al. [16] explored serverless computing and emphasized the need 
for workload-based autoscaling. They studied how performance changes with different workloads 
and used a Q-learning model to adjust concurrency limits, improving throughput. Their work also 
examined how concurrency settings impact performance and how reinforcement learning can 
effectively adjust these settings. 

In [17], Agarwal et al.  proposed using reinforcement learning to minimize cold start frequency 
in serverless systems by analyzing CPU usage and invocation patterns. Their approach showed that it 
could optimize the number of function instances ahead of time. Benedetti et al. [18] explored a 
reinforcement-based strategy for autoscaling in OpenFaaS, focusing on edge computing. They 
demonstrated that their model could learn to adjust scaling policies based on CPU usage, reducing 
service latency. This reinforcement learning approach allowed the system to autonomously adapt 
resource allocation in response to changing demands, enhancing the responsiveness and efficiency of 
serverless deployments in edge environments. 

Zafeiropoulos et al. [19] developed autoscaling methods for serverless applications using 
reinforcement learning techniques. They implemented several RL agents and environments, 
including Q-learning, DynaQ+, and Deep Q-learning algorithms, to manage dynamic workloads 
while ensuring Quality of Service (QoS) and efficient resource use. Vahidinia et al. [20] introduced a 
two-layer adaptive strategy. The first layer uses a holistic reinforcement learning approach to identify 
function invocation patterns and determine when to keep containers warm. The second layer, based 
on long short-term memory (LSTM), predicts future invocation times and the required number of 
pre-warmed containers. 

Similarly, Kumari et al. [21] presented an adaptive model that uses a deep neural network and 
LSTM to forecast the idle container window and assess the need for pre-warmed containers, 
addressing cold start delays in serverless computing. Their predictive models help allocate resources 
proactively, reducing latency associated with cold starts. Phung et al. [22] focused on maximizing 
performance with minimal resource use, aiming to optimize response times and meet QoS 
requirements. They proposed a strategy to identify scaling policies per pod, using Bi-LSTM for 
workload forecasting to adjust the number of pods dynamically, making Knative more responsive to 
workload changes and reducing delay. 

In reference [23], Kumari et al. introduced the ACPM framework for dynamic container 
provisioning during runtime. ACPM operates in two steps: first, it uses an LSTM model to determine 
the optimal number of containers that need preheating; then, it employs a Docker module to deliver 
preheated containers quickly, cutting down on cold starts. Suo et al. [24] examined the cold start 
problem in serverless frameworks and developed HotC, a runtime management system that uses an 
adaptive live container control algorithm. This algorithm combines exponential smoothing with the 
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Markov chain method to predict requests and efficiently manage hot containers. Pan et al. [25] 
proposed a new framework to improve serverless computing efficiency by addressing the cold start 
issue with a gradient-based pre-warming strategy, along with an automated resource scheduling 
algorithm for better workflow execution. Finally, Heidari and Azizi [26] presented a serverless 
architecture that handles infrastructure heterogeneity by dividing the serverless cluster into 
homogeneous pools, allowing for customized resource allocation and improved load balancing, 
which optimizes multi-core hardware use and overall system performance. 

III. Research Gap 
In serverless computing, one of the main challenges is determining the right number of 

instances, even though progress has been made in reducing cold start latency. Current studies mainly 
aim at shortening startup times and decreasing the frequency of cold starts, but they often do not 
effectively decide the optimal number of instances required at any moment. Closing these gaps is 
vital for improving the autoscaling effectiveness and efficiency in serverless environments. 

There are several limitations when using fixed containers and the Horizontal Pod Autoscaler 
(HPA) for autoscaling. Fixed containers struggle with scalability and often result in overprovisioning 
because they can't adjust to changing workloads, leading to inefficiencies and higher costs. They also 
have limited flexibility in deployment and do not adequately tackle the cold start problem, adding to 
operational challenges. On the other hand, while HPA provides autoscaling features, it can introduce 
delays in scaling and relies mainly on CPU and memory metrics, which might not fully capture the 
diverse needs of serverless applications. HPA also struggles with the cold start issue, has complex 
configurations, and can lead to resource waste since it may not scale down to zero when resources 
are idle. Additionally, HPA scales at the pod level, which may not be precise enough for the finer 
scaling required by serverless functions. 

To address these issues, an adaptive algorithm is needed that can predict workloads and 
accurately estimate the required number of instances. This would help balance key factors such as 
reducing the number of cold starts, improving CPU utilization, and minimizing rejected requests, 
thereby ensuring efficient use of resources, cost-effectiveness, and optimal performance in serverless 
computing. 

IV. Problem Statement 
In serverless computing, the preparation of containers for function execution plays a crucial role 

in system performance. This process involves either loading function code onto existing containers 
or using a standard containerization procedure. However, scaling resources down during idle periods 
and the delay in preparing containers, known as cold start, can create challenges. Although serverless 
computing's ability to scale down to zero is cost-effective, it also leads to cold start delays. 

In practical applications, such as image recognition, initiating functions involves multiple steps 
like container initialization, resource allocation, function loading, and execution, as illustrated in 
Error! Reference source not found.. Each of these steps can add to the cold start delay, particularly 
when incoming requests exceed the capacity of available containers. This delay can negatively 
impact the system's responsiveness and the efficient use of resources. Therefore, reducing cold start 
times is crucial for improving the performance of serverless computing. 

Common approaches to mitigating cold start delays include optimizing how containers are 
prepared, refining resource allocation methods, and enhancing scaling processes. By reducing the 
time required to initialize containers and allocate resources, serverless platforms can improve their 
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responsiveness and better manage varying workloads. This study focuses on reducing cold start times 
through statistical learning methods, aiming to boost the overall efficiency and responsiveness of 
serverless computing systems. 

 

V. Proposed Method 
In this section, we first provide the background for the ARIMA model, followed by our 

proposed self-adaptive scaling algorithm for serverless resource provisioning. 

A. ARIMA Model 
The Auto-Regressive Integrated Moving Average (ARIMA) model is widely used for 

forecasting time series data in fields like economics, finance, and engineering. This model relies on 
historical data to predict future trends. It is composed of three main elements: 

Auto-Regression (AR): This aspect examines the connections between current observations and 
those from the past. 

Moving Average (MA): This part focuses on the relationship between recent and earlier errors. 

Integration (I): This process involves differencing data to achieve stationarity, which means the 
data's mean and variance remain consistent over time. 

ARIMA is useful for analyzing time series data that shows trends, seasonality, or complex 
patterns, allowing for both short-term and long-term forecasts based on data properties. It can also 
handle and predict multiple time series concurrently, making it adaptable and easy to use with 
various data types. Its capability to understand complex patterns and relationships makes it 
particularly effective for predicting workloads in serverless environments, as shown in the following 
equation: 

𝑋(t) = 	C	 +)𝜙!𝑋(t − i)
"

!#$

+)θ!ε(t − j)
%

&#$

+ ε(𝑡) 

where: 

• C is the constant term, 

• 𝑋(𝑡) represents the observed value at time 𝑡, 

• 𝜙! denotes the coefficients for the autoregressive terms, 

• θ! denotes the coefficients for the moving average terms, 
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Fig. 1. Serverless function executing steps 
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• ε(𝑡) represents the error term at time 𝑡. 

B. Proposed adaptive resource scaling algorithm (ARSA) 
The Adaptive Resource Scaling Algorithm (ARSA) is designed to dynamically manage the 

number of active container instances in serverless computing environments. By using the ARIMA 
model to forecast workload demands, ARSA adjusts resources ahead of time, reducing cold start 
delays and improving performance. It calculates the required number of instances for each time slot 
based on predicted workload, average execution time, and failure rate. 

Unlike traditional scaling methods that rely on metrics like CPU or memory usage, ARSA 
employs a predictive approach using ARIMA model forecasts and failure rates. This involves 
creating a custom auto-scaler, implemented as a Python script, that integrates ARIMA predictions. 
Through simple calculations, ARSA adjusts the number of active containers to match forecasted 
workloads, preparing the environment and containers ahead of demand surges. By focusing on 
predicted needs rather than reactive measures, ARSA aims to streamline resource management and 
improve responsiveness in serverless computing. 

 

Algorithm 1. Adaptive Resource Scaling Algorithm (ARSA) 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

9. 
10. 
11. 
12. 
13. 
14. 

15. 
16. 

Initialize: 
    𝑛𝑢𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = 1; 
    𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 10	minutes; 
Repeat Every 10 minutes: 
    try: 
        Get latest workload prediction using ARIMA model (𝑝𝑟𝑒𝑑) 
        Calculate average execution time from start to now (𝑎𝑣𝑔_𝑒𝑥𝑒_𝑡𝑖𝑚𝑒) 
        Calculate failure rate in past 10 minutes (𝑓𝑎𝑖𝑙𝑢𝑟𝑒_𝑟𝑎𝑡𝑒) 
        𝑛𝑢𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒	 = 	𝑚𝑎𝑡ℎ. 𝑐𝑒𝑖𝑙((𝑝𝑟𝑒𝑑	 ∗ 	𝑎𝑣𝑔_𝑒𝑥𝑒_𝑡𝑖𝑚𝑒)	/	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙); 
        if 𝑓𝑎𝑖𝑙𝑢𝑟𝑒_𝑟𝑎𝑡𝑒	 >= 	Δ:  # Δ is the threshold for failure rate 
												𝑛𝑢𝑚𝑏_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒	+= 	1; 
    except Exception as e: 
        Log error message: "Error occurred: {e}" 
								𝑛𝑢𝑚𝑏_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒	 = 	1;  # Reset 𝑛𝑢𝑚𝑏_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 to the default value 
    Schedule next iteration after 10 minutes 
End. 

The pseudocode for the proposed algorithm is presented in Algorithm 1. Below, we provide a 
detailed description of the algorithm. 

Initialization: 

The algorithm starts by setting the initial instance count to 1 and defines a 10-minute interval for 
checking workload. 

Workload Prediction: 
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Every 10 minutes, the algorithm uses the ARIMA model to forecast future workload demands 
(denoted as 𝑝𝑟𝑒𝑑). It also calculates the average execution time (𝑎𝑣𝑔_𝑒𝑥𝑒_𝑡𝑖𝑚𝑒) from the beginning 
of the monitoring period up to the current time. Additionally, it monitors the failure rate over the last 
10 minutes to evaluate system performance. 

Instance Adjustment: 

The algorithm calculates the required number of instances using the formula: 

𝑛𝑢𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒	 = 	𝑚𝑎𝑡ℎ. 𝑐𝑒𝑖𝑙((𝑝𝑟𝑒𝑑	 ∗ 	𝑎𝑣𝑔_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒)	/	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 

If the failure rate in the past 10 minutes exceeds or equals Δ, indicating potential performance 
issues, the algorithm increments the number of instances by 1 to mitigate workload bottlenecks. It is 
worth mentioning that is this work, we set Δ to 3% based on empirical observations.  

Error Handling: 

The algorithm employs a try-except block to handle potential errors or exceptions during 
workload prediction and calculation processes. In case of an error, the algorithm logs the issue and 
resets the number of instances to its default value 1 to ensure continuous operation. 

In summary, the ARSA improves serverless workload management by adjusting resource 
allocation dynamically. It uses workload predictions, execution times, and system stability data to 
optimize resource use and ensure responsive performance in serverless environments. 

VI. Experimental Results 
In this section, we will first introduce the dataset used for our evaluation. Next, we will assess 

the accuracy of predictions made using the ARIMA model. Following that, we will describe the other 
algorithms considered in our comparison and the performance metrics employed. Finally, we will 
present the experimental results obtained. 

A. Dataset 

To evaluate the effectiveness of our approach, we utilized an open-source dataset provided by 
Microsoft Azure Functions [27]. This dataset comprises authentic invocation traces collected from 
real-world scenarios, capturing minute-by-minute invocation counts over a 14-day period. The initial 
10 days of data were designated for pattern modeling, serving as the training phase for our 
evaluation. The remaining four days were dedicated to simulation activities. Each day contains 144 
data points, representing the average number of requests per 10 minutes over a 24-hour period. This 
granular level of detail allows for a comprehensive assessment of our proposed methodology's 
performance. Fig. 2 illustrates the dataset. 
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B. Actual Data Versus Predicted Data 
To evaluate the ARIMA model's predictive accuracy, we used it to forecast future invocation 

counts based on the training data. Fig. 3 compares the observed values with the predicted values. As 
shown, the ARIMA model's predictions closely match the actual observed data, indicating high 
accuracy. The model effectively identifies the underlying patterns and trends within the dataset, 
confirming its reliability for predicting serverless workload demands. This accuracy is crucial for the 
success of our proposed adaptive resource scaling algorithm, as it ensures accurate prediction of 
future workloads and optimal resource allocation. 

C. Compared Algorithms 
We compared our proposed algorithm, termed "Adaptive Resource Scaling Algorithm (ARSA)," 

with several fixed instance configurations and the default HPA algorithm in Kubernetes. The 
comparison involved the following configurations: 

• Fixed Instance Configurations: We tested configurations with 1, 2, and 3 fixed instances 
separately to evaluate their performance under varying workloads. 

• Horizontal Pod Auto-scaler (HPA): We also compared our approach with the HPA 
algorithm, which requires specific configuration settings. For this study, the HPA was 
configured with a minimum of 1 instance and a maximum of 10 instances. The target average 
utilization was set to 18% based on our dataset analysis. This configuration was chosen to 
optimize the balance between the number of rejected requests and the incidence of cold starts. 

Fig. 2. Real-world dataset provided by Microsoft Azure Functions 

Fig. 3. Actual Data Versus Predicted Data 
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D. Metrics 

Number of Cold Starts: We measured the number of times new instances were initialized. Each 
instance initialization is considered a cold start. 

Average CPU Utilization: We evaluated the average percentage of CPU capacity used across 
different scaling strategies. This metric assesses resource allocation efficiency and performance. 

Memory Usage Cost: We calculated the cost associated with memory usage based on a rate of 
$0.005 per megabit per second (MBps). This analysis provides insights into the financial impact of 
different scaling strategies on memory resource utilization. 

Number of Rejected Requests: We examined the number of requests that were rejected due to missed 
deadlines. This metric reflects the system's ability to handle requests within required time constraints 
and indicates performance and reliability. 

Average Response Time: We evaluated the average time it took the system to process and respond to 
requests. This metric is crucial for understanding the system's scalability and efficiency under 
varying loads. 

E. Results 
This section presents and analyzes the simulation results. Fig. 4 displays the number of cold 

starts encountered by each algorithm. Fixed instance setups, which do not adjust to workload 
variations, lead to a constant cold start rate, which can cause inefficiencies in service quality and 
resource use. On the other hand, the ARSA algorithm, which uses predictive techniques, reduces cold 
starts to five, which is two fewer than the HPA, the default auto-scaler in Kubernetes. This reduction 
is attributed to ARSA's proactive adjustment of resources based on predicted workload demands, 
improving performance and responsiveness in serverless computing environments. 

 
Fig. 4. Comparison algorithms in terms of Number of cold starts 

Fig. 5 illustrates the results in terms of the average CPU utilization. The results indicate that the 
ARSA algorithm achieves a CPU utilization of 21%, closely aligning with the Single Fixed Instance 
configuration. This demonstrates that ARSA maintains high CPU efficiency while adapting to 
workload demands. In contrast, the fixed instance configurations show decreasing CPU utilization 
rates as the number of instances increases, resulting in less efficient resource usage. Our proposed 
ARSA algorithm improves CPU efficiency by approximately 28% compared to the HPA, which 
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achieves 16% utilization. This improvement underscores ARSA's effectiveness in optimizing 
resource allocation and enhancing performance through its predictive capabilities. 

Fig. 5. Comparison algorithms in terms of average CPU utilization 

The simulation results for the memory usage costs are shown in Fig. 6. The single fixed instance 
configuration has the lowest cost due to its minimal memory usage. ARSA achieves the second-
lowest cost, demonstrating its cost-effectiveness and efficient memory resource utilization. HPA 
ranks third, while the configurations with two and three fixed instances have the highest costs. This 
is due to excessive memory consumption and inefficient resource utilization, as increasing the 
number of instances leads to higher memory costs. Our proposed ARSA algorithm is 6.8% more 

cost-effective than HPA, highlighting its ability to optimize memory usage and reduce costs. 
Fig. 6. Comparison algorithms in terms of total memory usage cost 

Table 1 compares the number of rejected requests under different scaling strategies. The results 
clearly demonstrate the superior performance of the ARSA algorithm. Out of 1,103,680 total 
requests, ARSA only experiences 237 rejections due to missed deadlines. This is significantly lower 
than the rejection rates observed with HPA and the configurations with one or two fixed instances. 
The one and two fixed instance configurations have higher rejection rates due to their inability to 
adapt to changing workloads, resulting in missed deadlines. While the three fixed instance 
configuration performs slightly better in terms of rejections, it is not workload-aware and lacks the 
efficiency of adaptive scaling. 

Table 1. Number of rejected requests 

 Single Fixed 
Instance 

Two Fixed 
Instances 

Three Fixed 
Instances HPA ARSA 
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No. of Rejected 
Requests 

180,222	

	(16.32%) 

80,153		

(7.26%) 

5		

(0.00%) 

11,627		

(1.05%) 

237	

	(0.02%) 

 Fig. 7 shows the average response time for requests. The results show that the ARSA algorithm 
achieves response times similar to the three fixed instance configurations. In contrast, the response 
times for one and two fixed instances are significantly slower, leading to lower performance due to 
their inability to adapt to changing workloads. Furthermore, ARSA outperforms the HPA algorithm 
by 3%, highlighting its effectiveness in improving system responsiveness. This improvement is 
attributed to ARSA's ability to predict workload demands more accurately, enabling more efficient 
resource allocation. 

VII. Conclusion 
Resource scaling in serverless environments is a major problem to tackle, mostly due to how 

workloads can be unpredictable. In this work, we addressed this challenge by proposing a self-
adaptive approach for scaling serverless resources. Our proposed algorithm makes use of the ARIMA 
model for workload demand forecasting. Accordingly, we developed a service quality-based 
approach to address the problem of how many container instances should be in active state given the 
provisions of the forecaster model. As a case study, we used an industrial open-source dataset 
provided by Microsoft Azure Functions. Our proposed algorithm ARSA was compared with a single, 
two and three static instances and the default Horizontal Pod Auto-scaler (HPA) in Kubernetes. Cold 
start occurrences, average CPU usage, cost of memory expenditure, number of denied requests, and 
average response time were all included as evaluation metrics. The evaluation demonstrates that 
ARSA has a significant improvement in workload demand prediction, and therefore the number of 
instances needed, when compared to the baseline algorithms. This improvement in performance 
metrics helps to achieve lesser cold starts, higher CPU utilization, lower memory usage cost, reduced 
number of rejected requests, and better average response times particularly presents ARSA has 
prospects of being an enhancement to resource utilization and response optimization. This statement 
is based on the positive achievements offered by the ARSA approach. 
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Fig. 7. Comparison algorithms in terms of average request response time 
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