
The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

1

Adaptive Resource Scaling Algorithm for Serverless Computing Applications

Mohammed Ali Awla
Department of Computer Engineering

University of Kurdistan
Email: mohammed.awla@uok.ac.ir

Sadoon Azizi
Department of Computer Engineering

University of Kurdistan
Email: s.azizi@uok.ac.ir

Ayshe Rashidi
ICT Organization

Sanandaj Municipality
Email: a.rashidi@gmail.com

https://doi.org/10.31972/iceit2024.050

Abstract
Serverless computing has transformed cloud-based and event-driven applications by introducing the
Function-as-a-Service (FaaS) model. This model offers key benefits, including greater abstraction
from underlying infrastructure, simplified management, flexible pay-as-you-go pricing, and
automatic scaling and resource optimization. However, managing resources effectively in serverless
environments remains challenging due to the inherent variability and unpredictability of workload
demands. This paper introduces an Adaptive Resource Scaling Algorithm (ARSA) tailored for
serverless applications. ARSA leverages the Auto-Regressive Integrated Moving Average (ARIMA)
model to forecast workload demands. Using these predictions alongside a strategy focused on
maintaining service quality, ARSA dynamically adjusts the number of container instances needed.
The goal is to optimize resource usage while minimizing the occurrence of cold starts. We validated
ARSA using a real-world dataset from Microsoft Azure Functions. Our evaluation compared ARSA
against fixed instance settings (one, two, and three instances) and the standard Kubernetes Horizontal
Pod Auto-scaler (HPA). The results demonstrate that ARSA outperforms these baseline methods by
significantly reducing number of cold starts, improving CPU utilization, decreasing memory costs,
reducing the number of rejected requests, and enhancing response times. These improvements
underscore ARSA’s potential in efficiently managing dynamic workloads and enhancing the
performance of serverless environments.

Keywords: Serverless Computing, Function as a Service, Resource Provisioning, Cold Start Delay,
Auto-Scaling, ARIMA, Workload Prediction.

I. Introduction
With the rise of virtualization technologies, cloud computing has become a key part of our daily

activities [1]. In 2014, Amazon introduced serverless computing, which changed the way we think
about computational models. This approach helps reduce operational costs and simplifies the
complexities involved in system development, making businesses more agile and responsive. By
handling tasks like infrastructure provisioning, deployment, and management, cloud providers take
on the burdens that companies traditionally faced, allowing them to focus more on their main
business goals [2], [3], [4]. Serverless computing also benefits developers by letting them
concentrate on building functional logic without worrying about managing the infrastructure. This
shift not only streamlines the development process but also speeds up the deployment and scalability
of applications, fostering innovation and competitive advantages in businesses.

mailto:a.rashidi@gmail.com
https://doi.org/10.31972/iceit2024.050

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

2

Function as a Service (FaaS) has gained popularity as an emerging trend in cloud computing,
largely due to its event-driven, serverless nature. This model is increasingly used across industries,
supported by leading cloud providers like AWS Lambda [5], Google Cloud Functions (GCF) [6],
IBM Cloud Functions [7], and Microsoft Azure Functions [8]. The popularity of FaaS reflects the
growing demand for solutions that are scalable, flexible, and cost-effective, capable of handling
dynamic workloads and changing business needs. The wide availability of FaaS options also
indicates the maturity of the serverless computing ecosystem, offering developers a variety of tools
and platforms to suit their needs. As more organizations incorporate FaaS into their cloud strategies,
the field of cloud computing continues to grow and evolve.

Despite its advantages, serverless computing has some challenges, particularly with cold start
delays, which occur when there is a lag in setting up the function’s execution environment [9]. While
serverless functions can "scale to zero" to save resources when idle, this feature can lead to increased
latency when functions are restarted, as seen in cold starts [10], [11]. Research shows that cold starts
can sometimes be significantly longer than the actual execution time, up to 59 times in extreme cases
[12]. Therefore, addressing cold start delays is crucial for maintaining optimal performance and user
satisfaction in serverless systems.

Moreover, serverless computing's automatic scaling can lead to resource shortages during
sudden demand spikes, worsening the cold start issue. Some serverless platforms try to address this
by capturing hidden resource information to optimize scaling. For example, the Horizontal Pod Auto-
scaler (HPA) is a popular tool used in Kubernetes for automatically adjusting resources [13]. Other
frameworks, such as Kubeless, use resource data and function settings to better manage resource use
and avoid performance bottlenecks during workload changes. Effective scaling strategies are critical
for optimizing resources and managing the operational challenges in serverless environments.

In this paper, we propose an Adaptive Resource Scaling Algorithm, ARSA, using a Time Series-
based model called Auto-Regressive Integrated Moving Average (ARIMA). This model predicts
workload demands based on historical function invocation data, allowing for proactive adjustments
in resource allocation to better handle workload fluctuations. Our approach focuses on maximizing
resource efficiency by predicting future needs and making timely scaling adjustments. To test our
algorithm, we conducted comparisons with existing methods, including the Horizontal Pod Auto-
scaler (HPA) in Kubernetes and a fixed container setup, using real-world data from Microsoft Azure
Functions. The results highlight the strengths of our proposed method in managing resource
allocation, reducing cold starts, improving CPU utilization, and minimizing rejected requests.

In summary, the key contributions of this paper are:

• We propose a Time Series-based model using ARIMA for predicting future function
invocations and scaling resources accordingly.

• We thoroughly evaluate our approach against Kubernetes' HPA and a fixed container setup
using a real-world dataset from Microsoft Azure Functions, focusing on metrics like cold start
frequency, average CPU usage, and request rejections.

• Our findings demonstrate the effectiveness of our method in optimizing resource
management, reducing cold starts, enhancing CPU utilization, and lowering the number of
rejected requests.

The rest of this paper is organized as follows: Section II reviews related work, Section III
identifies the research gaps, Section IV explains the cold start problem, Section V outlines our
proposed method, Section VI discusses the experimental results, and Section VII concludes the
paper.

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

3

II. Related Work
Previous research has made significant progress in improving serverless computing, especially

in tackling the cold start issue [12], [14]. This section reviews various studies that have explored
autoscaling techniques to predict the number of pre-warmed containers, helping to reduce cold start
delays in serverless environments.

Somma et al. [15] developed and tested a container-based provisioning system for cloud
computing. Their approach addresses two key areas: the deployment of containers and the
management of container scaling. They introduced a resource management strategy that uses both
admission control and autoscaling, driven by a Q-learning algorithm. This algorithm adapts based on
the load on physical processors assigned to containers, without depending on the specific computing
environment. Similarly, Schuler et al. [16] explored serverless computing and emphasized the need
for workload-based autoscaling. They studied how performance changes with different workloads
and used a Q-learning model to adjust concurrency limits, improving throughput. Their work also
examined how concurrency settings impact performance and how reinforcement learning can
effectively adjust these settings.

In [17], Agarwal et al. proposed using reinforcement learning to minimize cold start frequency
in serverless systems by analyzing CPU usage and invocation patterns. Their approach showed that it
could optimize the number of function instances ahead of time. Benedetti et al. [18] explored a
reinforcement-based strategy for autoscaling in OpenFaaS, focusing on edge computing. They
demonstrated that their model could learn to adjust scaling policies based on CPU usage, reducing
service latency. This reinforcement learning approach allowed the system to autonomously adapt
resource allocation in response to changing demands, enhancing the responsiveness and efficiency of
serverless deployments in edge environments.

Zafeiropoulos et al. [19] developed autoscaling methods for serverless applications using
reinforcement learning techniques. They implemented several RL agents and environments,
including Q-learning, DynaQ+, and Deep Q-learning algorithms, to manage dynamic workloads
while ensuring Quality of Service (QoS) and efficient resource use. Vahidinia et al. [20] introduced a
two-layer adaptive strategy. The first layer uses a holistic reinforcement learning approach to identify
function invocation patterns and determine when to keep containers warm. The second layer, based
on long short-term memory (LSTM), predicts future invocation times and the required number of
pre-warmed containers.

Similarly, Kumari et al. [21] presented an adaptive model that uses a deep neural network and
LSTM to forecast the idle container window and assess the need for pre-warmed containers,
addressing cold start delays in serverless computing. Their predictive models help allocate resources
proactively, reducing latency associated with cold starts. Phung et al. [22] focused on maximizing
performance with minimal resource use, aiming to optimize response times and meet QoS
requirements. They proposed a strategy to identify scaling policies per pod, using Bi-LSTM for
workload forecasting to adjust the number of pods dynamically, making Knative more responsive to
workload changes and reducing delay.

In reference [23], Kumari et al. introduced the ACPM framework for dynamic container
provisioning during runtime. ACPM operates in two steps: first, it uses an LSTM model to determine
the optimal number of containers that need preheating; then, it employs a Docker module to deliver
preheated containers quickly, cutting down on cold starts. Suo et al. [24] examined the cold start
problem in serverless frameworks and developed HotC, a runtime management system that uses an
adaptive live container control algorithm. This algorithm combines exponential smoothing with the

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

4

Markov chain method to predict requests and efficiently manage hot containers. Pan et al. [25]
proposed a new framework to improve serverless computing efficiency by addressing the cold start
issue with a gradient-based pre-warming strategy, along with an automated resource scheduling
algorithm for better workflow execution. Finally, Heidari and Azizi [26] presented a serverless
architecture that handles infrastructure heterogeneity by dividing the serverless cluster into
homogeneous pools, allowing for customized resource allocation and improved load balancing,
which optimizes multi-core hardware use and overall system performance.

III. Research Gap
In serverless computing, one of the main challenges is determining the right number of

instances, even though progress has been made in reducing cold start latency. Current studies mainly
aim at shortening startup times and decreasing the frequency of cold starts, but they often do not
effectively decide the optimal number of instances required at any moment. Closing these gaps is
vital for improving the autoscaling effectiveness and efficiency in serverless environments.

There are several limitations when using fixed containers and the Horizontal Pod Autoscaler
(HPA) for autoscaling. Fixed containers struggle with scalability and often result in overprovisioning
because they can't adjust to changing workloads, leading to inefficiencies and higher costs. They also
have limited flexibility in deployment and do not adequately tackle the cold start problem, adding to
operational challenges. On the other hand, while HPA provides autoscaling features, it can introduce
delays in scaling and relies mainly on CPU and memory metrics, which might not fully capture the
diverse needs of serverless applications. HPA also struggles with the cold start issue, has complex
configurations, and can lead to resource waste since it may not scale down to zero when resources
are idle. Additionally, HPA scales at the pod level, which may not be precise enough for the finer
scaling required by serverless functions.

To address these issues, an adaptive algorithm is needed that can predict workloads and
accurately estimate the required number of instances. This would help balance key factors such as
reducing the number of cold starts, improving CPU utilization, and minimizing rejected requests,
thereby ensuring efficient use of resources, cost-effectiveness, and optimal performance in serverless
computing.

IV. Problem Statement
In serverless computing, the preparation of containers for function execution plays a crucial role

in system performance. This process involves either loading function code onto existing containers
or using a standard containerization procedure. However, scaling resources down during idle periods
and the delay in preparing containers, known as cold start, can create challenges. Although serverless
computing's ability to scale down to zero is cost-effective, it also leads to cold start delays.

In practical applications, such as image recognition, initiating functions involves multiple steps
like container initialization, resource allocation, function loading, and execution, as illustrated in
Error! Reference source not found.. Each of these steps can add to the cold start delay, particularly
when incoming requests exceed the capacity of available containers. This delay can negatively
impact the system's responsiveness and the efficient use of resources. Therefore, reducing cold start
times is crucial for improving the performance of serverless computing.

Common approaches to mitigating cold start delays include optimizing how containers are
prepared, refining resource allocation methods, and enhancing scaling processes. By reducing the
time required to initialize containers and allocate resources, serverless platforms can improve their

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

5

responsiveness and better manage varying workloads. This study focuses on reducing cold start times
through statistical learning methods, aiming to boost the overall efficiency and responsiveness of
serverless computing systems.

V. Proposed Method
In this section, we first provide the background for the ARIMA model, followed by our

proposed self-adaptive scaling algorithm for serverless resource provisioning.

A. ARIMA Model
The Auto-Regressive Integrated Moving Average (ARIMA) model is widely used for

forecasting time series data in fields like economics, finance, and engineering. This model relies on
historical data to predict future trends. It is composed of three main elements:

Auto-Regression (AR): This aspect examines the connections between current observations and
those from the past.

Moving Average (MA): This part focuses on the relationship between recent and earlier errors.

Integration (I): This process involves differencing data to achieve stationarity, which means the
data's mean and variance remain consistent over time.

ARIMA is useful for analyzing time series data that shows trends, seasonality, or complex
patterns, allowing for both short-term and long-term forecasts based on data properties. It can also
handle and predict multiple time series concurrently, making it adaptable and easy to use with
various data types. Its capability to understand complex patterns and relationships makes it
particularly effective for predicting workloads in serverless environments, as shown in the following
equation:

𝑋(t) = 	C	 +)𝜙!𝑋(t − i)
"

!#$

+)θ!ε(t − j)
%

&#$

+ ε(𝑡)

where:

• C is the constant term,

• 𝑋(𝑡) represents the observed value at time 𝑡,

• 𝜙! denotes the coefficients for the autoregressive terms,

• θ! denotes the coefficients for the moving average terms,

Warm
Start

Container
Preparation

Allocate
Resources

Load
Function

Execute
Function

Cold Start Delay

Total Execution Time

Fig. 1. Serverless function executing steps

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

6

• ε(𝑡) represents the error term at time 𝑡.

B. Proposed adaptive resource scaling algorithm (ARSA)
The Adaptive Resource Scaling Algorithm (ARSA) is designed to dynamically manage the

number of active container instances in serverless computing environments. By using the ARIMA
model to forecast workload demands, ARSA adjusts resources ahead of time, reducing cold start
delays and improving performance. It calculates the required number of instances for each time slot
based on predicted workload, average execution time, and failure rate.

Unlike traditional scaling methods that rely on metrics like CPU or memory usage, ARSA
employs a predictive approach using ARIMA model forecasts and failure rates. This involves
creating a custom auto-scaler, implemented as a Python script, that integrates ARIMA predictions.
Through simple calculations, ARSA adjusts the number of active containers to match forecasted
workloads, preparing the environment and containers ahead of demand surges. By focusing on
predicted needs rather than reactive measures, ARSA aims to streamline resource management and
improve responsiveness in serverless computing.

Algorithm 1. Adaptive Resource Scaling Algorithm (ARSA)

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12.
13.
14.

15.
16.

Initialize:
 𝑛𝑢𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = 1;
 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 10	minutes;
Repeat Every 10 minutes:
 try:
 Get latest workload prediction using ARIMA model (𝑝𝑟𝑒𝑑)
 Calculate average execution time from start to now (𝑎𝑣𝑔_𝑒𝑥𝑒_𝑡𝑖𝑚𝑒)
 Calculate failure rate in past 10 minutes (𝑓𝑎𝑖𝑙𝑢𝑟𝑒_𝑟𝑎𝑡𝑒)
 𝑛𝑢𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒	 = 	𝑚𝑎𝑡ℎ. 𝑐𝑒𝑖𝑙((𝑝𝑟𝑒𝑑	 ∗ 	𝑎𝑣𝑔_𝑒𝑥𝑒_𝑡𝑖𝑚𝑒)	/	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙);
 if 𝑓𝑎𝑖𝑙𝑢𝑟𝑒_𝑟𝑎𝑡𝑒	 >= 	Δ: # Δ is the threshold for failure rate
												𝑛𝑢𝑚𝑏_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒	+= 	1;
 except Exception as e:
 Log error message: "Error occurred: {e}"
								𝑛𝑢𝑚𝑏_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒	 = 	1; # Reset 𝑛𝑢𝑚𝑏_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 to the default value
 Schedule next iteration after 10 minutes
End.

The pseudocode for the proposed algorithm is presented in Algorithm 1. Below, we provide a
detailed description of the algorithm.

Initialization:

The algorithm starts by setting the initial instance count to 1 and defines a 10-minute interval for
checking workload.

Workload Prediction:

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

7

Every 10 minutes, the algorithm uses the ARIMA model to forecast future workload demands
(denoted as 𝑝𝑟𝑒𝑑). It also calculates the average execution time (𝑎𝑣𝑔_𝑒𝑥𝑒_𝑡𝑖𝑚𝑒) from the beginning
of the monitoring period up to the current time. Additionally, it monitors the failure rate over the last
10 minutes to evaluate system performance.

Instance Adjustment:

The algorithm calculates the required number of instances using the formula:

𝑛𝑢𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒	 = 	𝑚𝑎𝑡ℎ. 𝑐𝑒𝑖𝑙((𝑝𝑟𝑒𝑑	 ∗ 	𝑎𝑣𝑔_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒)	/	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)

If the failure rate in the past 10 minutes exceeds or equals Δ, indicating potential performance
issues, the algorithm increments the number of instances by 1 to mitigate workload bottlenecks. It is
worth mentioning that is this work, we set Δ to 3% based on empirical observations.

Error Handling:

The algorithm employs a try-except block to handle potential errors or exceptions during
workload prediction and calculation processes. In case of an error, the algorithm logs the issue and
resets the number of instances to its default value 1 to ensure continuous operation.

In summary, the ARSA improves serverless workload management by adjusting resource
allocation dynamically. It uses workload predictions, execution times, and system stability data to
optimize resource use and ensure responsive performance in serverless environments.

VI. Experimental Results
In this section, we will first introduce the dataset used for our evaluation. Next, we will assess

the accuracy of predictions made using the ARIMA model. Following that, we will describe the other
algorithms considered in our comparison and the performance metrics employed. Finally, we will
present the experimental results obtained.

A. Dataset

To evaluate the effectiveness of our approach, we utilized an open-source dataset provided by
Microsoft Azure Functions [27]. This dataset comprises authentic invocation traces collected from
real-world scenarios, capturing minute-by-minute invocation counts over a 14-day period. The initial
10 days of data were designated for pattern modeling, serving as the training phase for our
evaluation. The remaining four days were dedicated to simulation activities. Each day contains 144
data points, representing the average number of requests per 10 minutes over a 24-hour period. This
granular level of detail allows for a comprehensive assessment of our proposed methodology's
performance. Fig. 2 illustrates the dataset.

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

8

B. Actual Data Versus Predicted Data
To evaluate the ARIMA model's predictive accuracy, we used it to forecast future invocation

counts based on the training data. Fig. 3 compares the observed values with the predicted values. As
shown, the ARIMA model's predictions closely match the actual observed data, indicating high
accuracy. The model effectively identifies the underlying patterns and trends within the dataset,
confirming its reliability for predicting serverless workload demands. This accuracy is crucial for the
success of our proposed adaptive resource scaling algorithm, as it ensures accurate prediction of
future workloads and optimal resource allocation.

C. Compared Algorithms
We compared our proposed algorithm, termed "Adaptive Resource Scaling Algorithm (ARSA),"

with several fixed instance configurations and the default HPA algorithm in Kubernetes. The
comparison involved the following configurations:

• Fixed Instance Configurations: We tested configurations with 1, 2, and 3 fixed instances
separately to evaluate their performance under varying workloads.

• Horizontal Pod Auto-scaler (HPA): We also compared our approach with the HPA
algorithm, which requires specific configuration settings. For this study, the HPA was
configured with a minimum of 1 instance and a maximum of 10 instances. The target average
utilization was set to 18% based on our dataset analysis. This configuration was chosen to
optimize the balance between the number of rejected requests and the incidence of cold starts.

Fig. 2. Real-world dataset provided by Microsoft Azure Functions

Fig. 3. Actual Data Versus Predicted Data

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

9

D. Metrics

Number of Cold Starts: We measured the number of times new instances were initialized. Each
instance initialization is considered a cold start.

Average CPU Utilization: We evaluated the average percentage of CPU capacity used across
different scaling strategies. This metric assesses resource allocation efficiency and performance.

Memory Usage Cost: We calculated the cost associated with memory usage based on a rate of
$0.005 per megabit per second (MBps). This analysis provides insights into the financial impact of
different scaling strategies on memory resource utilization.

Number of Rejected Requests: We examined the number of requests that were rejected due to missed
deadlines. This metric reflects the system's ability to handle requests within required time constraints
and indicates performance and reliability.

Average Response Time: We evaluated the average time it took the system to process and respond to
requests. This metric is crucial for understanding the system's scalability and efficiency under
varying loads.

E. Results
This section presents and analyzes the simulation results. Fig. 4 displays the number of cold

starts encountered by each algorithm. Fixed instance setups, which do not adjust to workload
variations, lead to a constant cold start rate, which can cause inefficiencies in service quality and
resource use. On the other hand, the ARSA algorithm, which uses predictive techniques, reduces cold
starts to five, which is two fewer than the HPA, the default auto-scaler in Kubernetes. This reduction
is attributed to ARSA's proactive adjustment of resources based on predicted workload demands,
improving performance and responsiveness in serverless computing environments.

Fig. 4. Comparison algorithms in terms of Number of cold starts

Fig. 5 illustrates the results in terms of the average CPU utilization. The results indicate that the
ARSA algorithm achieves a CPU utilization of 21%, closely aligning with the Single Fixed Instance
configuration. This demonstrates that ARSA maintains high CPU efficiency while adapting to
workload demands. In contrast, the fixed instance configurations show decreasing CPU utilization
rates as the number of instances increases, resulting in less efficient resource usage. Our proposed
ARSA algorithm improves CPU efficiency by approximately 28% compared to the HPA, which

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

10

achieves 16% utilization. This improvement underscores ARSA's effectiveness in optimizing
resource allocation and enhancing performance through its predictive capabilities.

Fig. 5. Comparison algorithms in terms of average CPU utilization

The simulation results for the memory usage costs are shown in Fig. 6. The single fixed instance
configuration has the lowest cost due to its minimal memory usage. ARSA achieves the second-
lowest cost, demonstrating its cost-effectiveness and efficient memory resource utilization. HPA
ranks third, while the configurations with two and three fixed instances have the highest costs. This
is due to excessive memory consumption and inefficient resource utilization, as increasing the
number of instances leads to higher memory costs. Our proposed ARSA algorithm is 6.8% more

cost-effective than HPA, highlighting its ability to optimize memory usage and reduce costs.
Fig. 6. Comparison algorithms in terms of total memory usage cost

Table 1 compares the number of rejected requests under different scaling strategies. The results
clearly demonstrate the superior performance of the ARSA algorithm. Out of 1,103,680 total
requests, ARSA only experiences 237 rejections due to missed deadlines. This is significantly lower
than the rejection rates observed with HPA and the configurations with one or two fixed instances.
The one and two fixed instance configurations have higher rejection rates due to their inability to
adapt to changing workloads, resulting in missed deadlines. While the three fixed instance
configuration performs slightly better in terms of rejections, it is not workload-aware and lacks the
efficiency of adaptive scaling.

Table 1. Number of rejected requests

 Single Fixed
Instance

Two Fixed
Instances

Three Fixed
Instances HPA ARSA

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

11

No. of Rejected
Requests

180,222	

	(16.32%)

80,153		

(7.26%)

5		

(0.00%)

11,627		

(1.05%)

237	

	(0.02%)

 Fig. 7 shows the average response time for requests. The results show that the ARSA algorithm
achieves response times similar to the three fixed instance configurations. In contrast, the response
times for one and two fixed instances are significantly slower, leading to lower performance due to
their inability to adapt to changing workloads. Furthermore, ARSA outperforms the HPA algorithm
by 3%, highlighting its effectiveness in improving system responsiveness. This improvement is
attributed to ARSA's ability to predict workload demands more accurately, enabling more efficient
resource allocation.

VII. Conclusion
Resource scaling in serverless environments is a major problem to tackle, mostly due to how

workloads can be unpredictable. In this work, we addressed this challenge by proposing a self-
adaptive approach for scaling serverless resources. Our proposed algorithm makes use of the ARIMA
model for workload demand forecasting. Accordingly, we developed a service quality-based
approach to address the problem of how many container instances should be in active state given the
provisions of the forecaster model. As a case study, we used an industrial open-source dataset
provided by Microsoft Azure Functions. Our proposed algorithm ARSA was compared with a single,
two and three static instances and the default Horizontal Pod Auto-scaler (HPA) in Kubernetes. Cold
start occurrences, average CPU usage, cost of memory expenditure, number of denied requests, and
average response time were all included as evaluation metrics. The evaluation demonstrates that
ARSA has a significant improvement in workload demand prediction, and therefore the number of
instances needed, when compared to the baseline algorithms. This improvement in performance
metrics helps to achieve lesser cold starts, higher CPU utilization, lower memory usage cost, reduced
number of rejected requests, and better average response times particularly presents ARSA has
prospects of being an enhancement to resource utilization and response optimization. This statement
is based on the positive achievements offered by the ARSA approach.

VIII. Acknowledgment
We would like to disclose the assistance of any AI tool used for the purpose of initial drafting

and language refining of this manuscript, ChatGPT, as an exception. Editing and paraphrasing were

Fig. 7. Comparison algorithms in terms of average request response time

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

12

done using this tool. The authors prepared further edits to the documents in order to maintain their
academic integrity as well as to meet the requirements of the conference.

References
[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility,”
Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009, doi:
https://doi.org/10.1016/j.future.2008.12.001.

[2] N. Kratzke, “A brief history of cloud application architectures,” 2018. doi:
10.3390/app8081368.

[3] I. Baldini et al., “Serverless Computing: Current Trends and Open Problems,” in Research
Advances in Cloud Computing, S. Chaudhary, G. Somani, and R. Buyya, Eds., Singapore:
Springer Singapore, 2017, pp. 1–20. doi: 10.1007/978-981-10-5026-8_1.

[4] M. Sewak and S. Singh, “Winning in the Era of Serverless Computing and Function as a
Service,” in 2018 3rd International Conference for Convergence in Technology (I2CT), 2018,
pp. 1–5. doi: 10.1109/I2CT.2018.8529465.

[5] “Amazon. AWS Lambda.” Accessed: Aug. 25, 2024. [Online]. Available:
https://aws.amazon.com/lambda/

[6] “Google. Google Cloud Functions.” Accessed: Aug. 25, 2024. [Online]. Available:
https://cloud.google.com/functions

[7] “IBM. IBM Cloud Functions.” Accessed: Aug. 25, 2024. [Online]. Available:
https://cloud.ibm.com/functions/

[8] “Microsoft. Azure Functions.” Accessed: Aug. 25, 2024. [Online]. Available:
https://azure.microsoft.com/en-in/products/functions/

[9] M. S. Aslanpour et al., “Serverless Edge Computing: Vision and Challenges,” in ACM
International Conference Proceeding Series, 2021. doi: 10.1145/3437378.3444367.

[10] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A Review of Auto-scaling
Techniques for Elastic Applications in Cloud Environments,” J Grid Comput, vol. 12, no. 4,
2014, doi: 10.1007/s10723-014-9314-7.

[11] S. Verma and A. Bala, “Auto-scaling techniques for IoT-based cloud applications: a review,”
Cluster Comput, vol. 24, no. 3, 2021, doi: 10.1007/s10586-021-03265-9.

[12] P. Vahidinia, B. Farahani, and F. S. Aliee, “Cold Start in Serverless Computing: Current
Trends and Mitigation Strategies,” in 2020 International Conference on Omni-Layer
Intelligent Systems, COINS 2020, 2020. doi: 10.1109/COINS49042.2020.9191377.

[13] “Kubernetes.” Accessed: Aug. 25, 2024. [Online]. Available:
https://kubernetes.io/docs/home/

[14] M. Golec, G. K. Walia, M. Kumar, F. Cuadrado, S. S. Gill, and S. Uhlig, “Cold Start Latency
in Serverless Computing: A Systematic Review, Taxonomy, and Future Directions,” ArXiv,
vol. abs/2310.08437, 2023.

[15] G. Somma, C. Ayimba, P. Casari, S. Pietro Romano, and V. Mancuso, “When less is more:
Core-restricted container provisioning for serverless computing,” in IEEE INFOCOM 2020 -

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

13

IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2020,
2020. doi: 10.1109/INFOCOMWKSHPS50562.2020.9162876.

[16] L. Schuler, S. Jamil, and N. Kuhl, “AI-based resource allocation: Reinforcement learning for
adaptive auto-scaling in serverless environments,” in Proceedings - 21st IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing, CCGrid 2021, 2021.
doi: 10.1109/CCGrid51090.2021.00098.

[17] S. Agarwal, M. A. Rodriguez, and R. Buyya, “A reinforcement learning approach to reduce
serverless function cold start frequency,” in Proceedings - 21st IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, CCGrid 2021, 2021. doi:
10.1109/CCGrid51090.2021.00097.

[18] P. Benedetti, M. Femminella, G. Reali, and K. Steenhaut, “Reinforcement Learning
Applicability for Resource-Based Auto-scaling in Serverless Edge Applications,” in 2022
IEEE International Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events, PerCom Workshops 2022, 2022. doi:
10.1109/PerComWorkshops53856.2022.9767437.

[19] A. Zafeiropoulos, E. Fotopoulou, N. Filinis, and S. Papavassiliou, “Reinforcement learning-
assisted autoscaling mechanisms for serverless computing platforms,” Simul Model Pract
Theory, vol. 116, 2022, doi: 10.1016/j.simpat.2021.102461.

[20] P. Vahidinia, B. Farahani, and F. S. Aliee, “Mitigating Cold Start Problem in Serverless
Computing: A Reinforcement Learning Approach,” IEEE Internet Things J, vol. 10, no. 5,
2023, doi: 10.1109/JIOT.2022.3165127.

[21] A. Kumari, B. Sahoo, and R. K. Behera, “Mitigating Cold-Start Delay using Warm-Start
Containers in Serverless Platform,” in INDICON 2022 - 2022 IEEE 19th India Council
International Conference, 2022. doi: 10.1109/INDICON56171.2022.10040220.

[22] H. D. Phung and Y. Kim, “A Prediction based Autoscaling in Serverless Computing,” in
International Conference on ICT Convergence, 2022. doi:
10.1109/ICTC55196.2022.9952609.

[23] A. Kumari and B. Sahoo, “ACPM: adaptive container provisioning model to mitigate
serverless cold-start,” Cluster Comput, vol. 27, no. 2, 2024, doi: 10.1007/s10586-023-04016-
8.

[24] K. Suo, J. Son, D. Cheng, W. Chen, and S. Baidya, “Tackling Cold Start of Serverless
Applications by Efficient and Adaptive Container Runtime Reusing,” in Proceedings - IEEE
International Conference on Cluster Computing, ICCC, 2021. doi:
10.1109/Cluster48925.2021.00018.

[25] S. Pan, H. Zhao, Z. Cai, D. Li, R. Ma, and H. Guan, “Sustainable Serverless Computing With
Cold-Start Optimization and Automatic Workflow Resource Scheduling,” IEEE Transactions
on Sustainable Computing, vol. 9, no. 3, 2024, doi: 10.1109/TSUSC.2023.3311197.

[26] S. Heidari and S. Azizi, “Heterogeneity-aware Load Balancing in Serverless Computing
Environments,” in 7th International Conference on Internet of Things and Applications, IoT
2023, 2023. doi: 10.1109/IoT60973.2023.10365354.

[27] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing the serverless
workload at a large cloud provider,” in Proceedings of the 2020 USENIX Annual Technical
Conference, ATC 2020, 2020.

The 3rd International Conference on Engineering and innovative Technology ICEIT2024
Salahaddin University-Erbil, 30-31 October 2024.

14

