Third International Conference of Mathematics and its Applications

(TICMA 2022)

Sciences

زانكۆى سەلاخەدىن - ھەولىر College of science / Mathematics Department Salahaddin University-Erbil 29-31 August 2022

زانكۆى سەلاحەدىن - ھەولىر Salahaddin University-Erbil

College of science / Mathematics Department

RESEARCH PAPER

Purely Semismall Compressible Modules

Mukdad Qaess Hussain^{1,a,*} Zahraa jawad kadhim^{2,b} Shahad Jasim Mahmood^{3,c}

¹College of Education for pure science, Diyala University ²Computer Engineering, Al-mansur University College ³College of science, Diyala University

> ^a<u>mukdadqaess2016@yahoo.com</u> ^bzahraa.jawad@muc.edu.iq ^cshahadjasim@uodiyala.edu.iq

ABSTRACT:

Let R be a ring with 1 and D be unitary left Module over R. In this paper, we present purely semi small compressible Modules. Also, we give remarks and examples, many properties of such Modules are investigated.

KEY WORDS: Semi small Submodule, prime Modules, pure Modules, semi small compressible Module. DOI: <u>https://doi.org/10.31972/ticma22.02</u>

1. INTRODUCTION:

A Submodule W of an R-Module D is small Submodule (W \ll D) if W + U = D for any Submodule U of D then U = D[1]. A proper Submodule W of an R-Module D is semismall of D (W \ll_S D) if W = 0 or W/U \ll D/U \forall nonzero Submodule U of W [2]. An R-Module D is semismall compressible (S.S.C.) if D embedded in all its non-zero semismall Submodule. That is, D is S.S.C. if \exists a monomorphism f: D \rightarrow W whenever $0 \neq W \ll_s D[3]$. A ring R is S.S.C. if R as R-Module is S.S.C. [3]. In this paper, we give purely semismall compressible Modules as a generalization of semismall compressible Modules.

An R-Module D is purely semismall compressible (P.S.S.C.) if D embedded in all its non-zero pure semismall Submodule. Equivalently, D is P.S.S.C. if \exists a monomorphism $f : D \rightarrow W$ whenever $0 \neq W$ is a pure semismall Submodule of D. A ring R is P.S.S.C. if R as R-Module is P.S.S.C. Clearly, every S.S.C. Module is P.S.S.C. The converse is not true.

For example:

- Z₄ as a Z-Module is P.S.S.C. which is not S.S.C.
- An R-Module D is purely semismall simple if pure semismall Submodules of D are (0) and D.
- Every purely semismall simple Module is P.S.S.C.
- Every integral domain R is a P.S.S.C. R-Module.
- A ring R is regular ring if for every $r \in R \exists w \in R$ such that r = rwr[4].
- An R-Module D is regular Module if for every $u \in D$ and $\forall r \in R, \exists w \in R$ such that ru = rwru[5].
- Every regular Module D is S.S.C. iff D is P.S.S.C.
- Every Module D over regular ring R is S.S.C. iff D is P.S.S.C.

* Corresponding Author: Mukdad Qaess Hussain

E-mail: mukdadqaess2016@yahoo.com Article History: Received: 01/08/2022 Accepted: 15/09/2022 Published: 07/12/2022 **Proposition 1.** Let D_1 and D_2 be two isomorphic Modules. Then D_1 is P.S.S.C. iff D_2 is P.S.S.C. **Proof:** Assume D_1 is P.S.S.C. and an isomorphism $\varphi: D_1 \to D_2$. Let $0 \neq W$ be a pure semismall Submodule of D_2 . Put $K = \varphi^{-1}(W)$, thus K is a semismall submodule of D_1 . Claim K is pure in D_1 . Let j be an ideal of R. But f is a monomorphism gives $\varphi(jD_1 \cap K) = \varphi(jD_1) \cap \varphi(K) = j\varphi(D_1) \cap \varphi\varphi^{-1}(W) = jD_2 \cap W =$ $jW = j\varphi(K) = \varphi(jK)$. But φ is an isomorphism, then $jD_1 \cap K = jK$. Hence K is pure in D_1 . Let f: $D_1 \to K$ be a monomorphism and let $g = = \varphi \Big|_K$ thus g: $K \to D_2$ is a monomorphism and $g(K) = \varphi(\varphi^{-1}(W)) =$ W, hence g: $K \to W$ is a monomorphism. Now, we have the composition $D_2 \xrightarrow{\varphi^{-1}} D_1 \xrightarrow{f} K \xrightarrow{g} W$. Let Y = $gf\varphi^{-1}$ is a monomorphism. Thus D_2 is P.S.S.C.

Proposition 2. Every non-zero pure semismall Submodule of a P.S.S.C. Module is P.S.S.C. **Proof:** Assume W be a non-zero pure semismall Submodule of P.S.S.C. Module D. Assume U be a pure semismall Submodule of W. Thus, by [6, Remarks 1.2.8] U is pure in D. Then there is a monomorphism f: $W \rightarrow U$ and hence if: $U \rightarrow W$ is a monomorphism where i: $U \rightarrow W$ be inclusion homomorphism. Thus W is P.S.S.C.

Corollary 3. Every direct summand of P.S.S.C. Module is P.S.S.C.

Corollary 4. Assume D Regular Module. Every non-zero semismall Submodule of P.S.S.C. Module D is P.S.S.C.

Corollary 5. Let R be a regular ring. Every non-zero semismall Submodule of P.S.S.C. is P.S.S.C.

Remark 6. A homomorphic image (quotient) of P.S.S.C. Module is not always be P.S.S.C. For example, Z as Z-Module is P.S.S.C., but $Z/6Z \approx Z_6$ is not a P.S.S.C. Z-Module.

Remark 7. The direct sum of P.S.S.C. Modules is not P.S.S.C.

Example 8. Let $D = Z_4 \oplus Z_2$ as a Z-Module. Clearly Z_4 and Z_2 is P.S.S.C. Z-Module. Since D is not P.S.S.C. But $D = \{(\overline{0}, \overline{0}), (\overline{0}, \overline{1}), (\overline{1}, \overline{0}), (\overline{1}, \overline{1}), (\overline{2}, \overline{0}), (\overline{2}, \overline{1}), (\overline{3}, \overline{0}), (\overline{3}, \overline{1})\}, F = Z(\overline{1}, \overline{1}) = \{(\overline{0}, \overline{0}), (\overline{1}, \overline{1}), (\overline{2}, \overline{0}), (\overline{3}, \overline{1})\}, and G = Z(\overline{2}, \overline{1}) = \{(\overline{0}, \overline{0}), (\overline{2}, \overline{1})\}.$ Clearly, $D = F \oplus G$. Thus, F and G is a pure semismall Submodule of D, since D cannot be embedded in F (or in G). Thus D is not P.S.S.C.

An R-Module D is purely semismall prime (P.S.S.P.) if ann(D) = ann(W) for each pure semismall Submodule $0 \neq W$ of D.

A Submodule W of a Module D is P.S.S.P. Submodule if $wz \in W$ with $s \in R, z \in D$ and (z) is pure semismall in D implies either $z \in W$ or $s \in [W:D]$.

Example 9. Let $D = Z_6$ as a Z-Module and $W = (\overline{2})$. W is pure semismall in Z_6 and W is P.S.S.P. Submodule of D.

Lemma 10. An R-Module D is P.S.S.P. iff (0) is a P.S.S.P. Submodule of D.

Proof: (\Rightarrow) Suppose wz = 0 with w \in R, z \in D and (z) is pure in D. Assume z \neq 0. Since D is P.S.S.P. then annD = ann(z) and hence w \in annD = [0:D]. Thus (0) is a P.S.S.P. Submodule of D.

(\Leftarrow) Assume (0) is a P.S.S.P. Submodule of D and $0 \neq W$ be a pure semismall Submodule of D. Let $w \in$ annW. Thus wz = 0 for all $z \in W$, and hence $wz \in (0)$. Assume that $z \neq 0$, then $w \in [0: D] = annD$, thus annW \subseteq annD, so annD = annW, then D is P.S.S.P.

Lemma 11. Let D be a Module and every Submodule of a pure Module is pure. If W is P.S.S.P. Module, then annW is a pure semismall ideal of R for each non-zero pure semismall Submodule W of D.

Proof: Assume $0 \neq W$ be a pure Submodule of D. let $a, b \in R$ and $ab \in annW$. Thus abW = 0. Suppose that $bW \neq 0$. Since $bW \leq W$ and W is pure in D then bW is pure in D. Since D is P.S.S.P. and $a \in annbW$, then $a \in annD$, on the other hand annD = annW, so $a \in annW$ and hence annW is a semismall prime ideal of R. The converse of Lemma 11 is not true.

Example 12. Z_6 is not P.S.S.P. Z-Module, however $ann_z(\overline{2}) = 3Z$ and $ann_z(\overline{3}) = 2Z$ which are both prime ideals in Z and that $(\overline{2}), (\overline{3})$ are pure Submodule of Z_6 .

Proposition 13. Every P.S.S.C. Module is P.S.S.P.

Proof: Assume D be P.S.S.C. Module and $0 \neq W$ be a pure semismall Submodule of D. To show ann D = annW. Let $x \in annW$. Thus xW = 0. Let $f: D \rightarrow W$ be a monomorphism, thus $f(xD) = xf(D) \subseteq xW = 0$ implies that xD = 0, then $x \in annW$ and hence annD = annW.

2. CONCLUSIONS

In this paper, we give purely semismall compressible Modules. Also, we give remarks and examples, many properties of such Modules

- D_1 is purely semismall compressible. iff D_2 is purely semismall compressible, where D_1 and D_2 be two isomorphic Modules.
- Every non-zero pure semismall Submodule of purely semismall compressible Module is purely semismall compressible.
- Every direct summand of purely semismall compressible Module is purely semismall compressible.
- Every non-zero semismall Submodule of regular purely semismall compressible Module is purely semismall compressible.
- Every non-zero semismall Submodule of purely semismall compressible in regular ring is purely semismall compressible.
- A homomorphic image (quotient) of purely semismall compressible Module is not always be purely semismall compressible.
- The direct sum of purely semismall compressible Modules is not purely semismall compressible.
- Every purely semismall compressible Module is purely semismall prime.

References

- [1] Kasch, F., 1982. Modules and rings (Vol. 17). Academic press.
- [2] Ali, I.M. and Mahmood, L.S., 2009, March. Semismall submodules and semi-lfting modules. In *Proceeding of 3 rd* scientific conference of the college of science, Univ. of Baghdad (pp. 24-26).
- [3] Kadhim, Z.J., Dheyab, A.H., Abdulkareem, D.J. and Hussain, M.Q., 2020. Semismall compressible and semismall retractable modules. *Journal of Discrete Mathematical Sciences and Cryptography*, 23(7),1395-1398.
- [4] Rotman, J.J. and Rotman, J.J., 2009. An introduction to homological algebra (Vol. 2). New York: Springer.
- [5] N. H. Garib., 1989. Some Generalizations of Lifting Modules. M. Sc. thesis, Mosul University.
- [6] Sahera Yasen Mahmoo., 1993. on F-regular modules, Msc Thesis. Baghdad university.