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A B S T R A C T: 
This paper introduces the Lasso and Ridge Regression methods, which are two popular regularization approaches. The 

method they give a penalty to the coefficients differs in both of them. L1 Regularization refers to Lasso linear regression, while L2 
Regularization refers to Ridge regression. As we all know, regression models serve two main purposes: explanation and prediction 
of scientific phenomena. Where prediction accuracy will be optimized by balancing each of the bias and variance of predictions, 
while explanation will be gained by constructing interpretable regression models by variable selection. The penalized regression 
method, also known as Lasso regression, adds bias to the model's estimates and reduces variance to enhance prediction. Ridge 
regression, on the other hand, introduces a minor amount of bias in the data to get long-term predictions. In the presence of 
multicollinearity, both regression methods have been offered as an alternative to the least square approach (LS). Because they deal 
with multicollinearity, they have the appropriate properties to reduce numerical instability caused by overfitting. As a result, 
prediction accuracy can be improved. For this study, the Corona virus disease (Covid-19) dataset was used, which has had a 
significant impact on global life. Particularly in our region (Kurdistan), where life has altered dramatically and many people have 
succumbed to this deadly sickness. Our data is utilized to analyze the benefits of each of the two regression methods. The results 
show that the Lasso approach produces more accurate and dependable or reliable results in the presence of multicollinearity than 
Ridge and LS methods when compared in terms of accuracy of predictions by using NCSS10, EViews 12 and SPSS 25. 
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1. INTRODUCTION: 
Multiple regression is frequently used to build a model for predicting future responses or to look into 

the link between the response variable and the predictor factors. The model's prediction accuracy is critical 
for the first aim, but the model's complexity is more relevant for the second goal. The least squares (LS) 
regression is notorious for underperforming in terms of model complexity and prediction accuracy. Ridge 
regression (Hoerl & Kennard, 1970), the Garotte (Breiman, 1995), Bridge regression (Frank and Friedman, 
1993) and the Lasso (Tibshirani, 1996) were among the regularized regression approaches created in the last 
few decades to solve the faults of (LS) regression (see Van der Kooij and Meulman, 2006). The (LS) provides 
the coefficients that best fit to the data, with the additional criterion of finding unbiased coefficients. In this 
case, unbiased means that LS does not take into account which of the independent variables is more relevant 
than the others. It finds the coefficients for a given data set; there is just one set of betas to find Residual sum 
of squares (RSS). The intriguing question becomes, "Is the model with the smallest RSS truly the optimal 
mode?" The answer to the preceding question is (not really). It must also take into account (Bias), as implied 
by the word unbiased. Bias refers to how equally concerned a model is with its predictors. 

 
  This investigation will take a variety of approaches. This research will take a variety of techniques, 
using a variety of phrases and figures.   There are two things that you should always keep in our mind. The 
first thing is that we always favor a model that catches the general patterns. 
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The other is that we would forecast it based on new data rather than specific data. As a result, evaluation 
of model should be based on new data (testing set), rather than data that has already been collected (training 
set). Then, by adding a penalty term to the best fit produced from the trained data, regularization is a key 
concept used to avoid overfitting of the data, especially when the trained data are highly variable. 
Regularization is used to reduce volatility in the tested data, as well as to limit the influence of predictor factors 
on the output variable by compressing their coefficients. In statistics, the Lasso method is widely used to 
improve the model's prediction accuracy and interpretability. It was created in 1989 and is a regression strategy 
or approach that includes selection and regularization.  

Lasso regression is a shrinkage-based extension of linear regression. The Lasso constrains the sum of 
the absolute values of the model parameters, with an upper bound of a specified constant. As a result of this 
constraint, the regression coefficients for some variables to shrink towards zero, i.e. (shrinkage). When there 
is automatic feature or variable selection, the Lasso regression is fairly simple (very easy). It's also useful 
when dealing with high-correlation predictors, as standard regression will usually have large regression 
coefficients. The Lasso regression technique can be applied in three different ways: (stepwise, backward, and 
forward) techniques. Feature selection is an important step in machine learning to avoid overfitting, and it's 
the same in regression. 

If there are too many features in Lasso, some of them are completely removed, Setting the coefficients 
to zero completes the process. In machine learning jargon (vocab), this technique is referred to as (L1 
Regularization). The Ridge regression was the most widely used technique for enhancing (improving) 
accuracy of prediction at the time. Ridge regression lowers prediction error by reducing overfitting by 
lowering the sum of the squares of the regression coefficients to be smaller than a specified value. However, 
it does not perform covariate selection and so does not help to the model's interpretability. The Lasso 
regression achieves both of these goals by reducing the total of the absolute values of the regression 
coefficients to be less than a fixed value, effectively driving certain coefficients to zero and removing them 
from the prediction process. This notion is identical to Ridge regression, which decreases the size of the 
coefficients as well, however Ridge regression tends to zero out many fewer coefficients. 

 
2. METHODOLOGY: 

A methodology of relationship between variables known as the regression studies, Functions are 
generally used to approximate the data. In the late 1880s, Francis Galton wondered if he could forecast 
men's height based on the height of their fathers. He proposed that men's heights are determined by the 
heights of their fathers, i.e., the taller the parent, the taller the son. Galton (1889) attempted to fit a 
straight line across the data set by plotting the heights of 14 fathers and their sons (Al-Nasser, 2017). In 
this case the relation between two variables Y and X can be written as:  

} = {& + {**+ + À+								    ,   À+~Õ(0, ùK6)                                       (1) 

This equation refers to simple linear regression model where Y is called a dependent variable, X is 
called a predictor variable and ε is called a random error, other symbols β0, β1 are called the regression 
coefficients (parameters). In general, a multiple linear regression model studies the relationship between 
dependent variable and several predictors’ variables or features !+ = (!+*, !+6, … , !+%) for a given (/) 
samples (*+ , }+)+,*! . This model can be written as the form: 

b+ = {& + {*!+* + {6!+6 +⋯+ {%!+% + À+          É = 1,2, … , V						,      À+~Õ(0, ùK6)                    (2) 
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Where: b+:	the dependent variable, !4: the jth predictor variables.  {4: the average effect on response 
variable b a one-unit increase in !4, all other predictors held constant and À+: the error term. The least 
square approach (LS), which minimizes the Residual sum of squares (RSS), is used to determine the 
values of these parameters	{&, {*, {6, … , {%: 

œ]] = ∑ (}+ − }—+)6!
+,* 									                                                 (3) 

Where: 

 }+:	represents the actual response value for the NLM observation, and }—+:	 represents the predicted 
response value based on the multiple linear regression model. If the data consists of n observations, then 
the following linear regression model is considered: 

}+ = *+N{ + À+												                                                   (4) 

where { is a vector of parameters and À+ are scalar random errors, the matrix form (4) can be represented 
as (a general linear model) 

Y = Xβ + ε            ,         À+~Õ(0, ùK6)                       (5) 

Y: represents a vector of the response variable of order (n × 1). 

X: represents the matrix of the observation of the explanatory variables of order (n × p), where p = k +
1 

β: vector parameters are estimated from the class (p × 1).  

ε: random error vector of class (n × 1).  

In form (4) and (5), the errors are assumed to have zero mean and a constant variance:	L(À) = 0	, 
v.C(À) = ù6◊! (see Bager, Mohammed, & Odah, 2017), As a result, the OLS assumptions are met, and 
the following estimations of  { are obtained: 

{ÿ = (!N!))*!Nb						                                                              (6) 

And the fitted values of the response variable are:    

bŸ = !{ÿ = !(!N!))*!Nb						                                                (7) 

Multicollinearity can be a concern when the predictor variables are highly correlated. This can make the 
model's coefficient estimations incorrect (unreliable) and have a lot of variances.  
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3. REGULARIZATION METHODS 

Regularization works by adding a penalty, complexity term, or shrinkage term to the complicated 
model using Residual sum of squares (RSS). 

œ]] = ∑ `}+ − {& − ∑ {4*+4%
4,* a6									!

+,*                                               (8) 

Regularization solves the overfitting problem, which has an impact on the model's accuracy. It is carried 
out by adding the penalty term to the best fit equation derived from the trained data. This strategy can 
be used to reduce the number of variables in the model while still keeping them in the model. 
Regularization can be used for a variety of purposes, including deciphering (understanding) simpler 
models such as sparse and group structure models. Ridge Regression and Lasso Regression are two 
major regularization techniques that are used to reduce the model's complexity. Except for the penalty 
term, which is different since lasso regression uses absolute weights and ridge regression uses the square 
of weights (see Melkumova & Shatskikh, 2017). 

4. LASSO REGRESSION  
Lasso was developed by Tibshirani (1996), which is widely used in the construction of prediction 

models. Hastie, Tibshirani, and Wainwright (2015) provide a great introduction to the Lasso's physics 
and use as a prediction tool (Tibshirani and Taylor, 2011). The full form of Lasso is the least Absolute 
Shrinkage and Selection Operation. The Lasso regression is a regularization technique. it is used over 
regression methods for a more accurate prediction. The "shrinkage" strategy is used in the lasso model 
to generate coefficients, which are then shrunk toward the center point as the mean or median. Data 
values are shrunk towards a central point known as the mean in shrinkage. In regularization, lasso 
regression is based on simple models with fewer parameters (models with fewer parameters). Because 
of the shrinkage process, we can get a better interpretation of the models. The shrinking procedure also 
allows for the detection of variables that are tightly linked to variables that correspond to the target. 
Penalized regression is another name for Lasso regression. In machine learning, this strategy is 
commonly used to pick a subset of variables. When compared to other regression models, it has a greater 
prediction accuracy. Model interpretation is increased by lasso regularization. The lasso regression 
penalizes the dataset's less important features. This dataset's coefficients are set to zero, resulting in their 
removal. For lasso regression, a dataset with high dimensions and correlation is well suited (Flexeder, 
2010).  

The Lasso method has been popularly used for variable selection problems. In a regression model, 
the Lasso method uses a ⁄* penalty to shrink the coefficients associated with covariates towards zero 
and set some unimportant covariate coefficients to zero, such that important covariates are selected and 
unimportant covariates are left out. The Lasso method was originally developed to model the 
quantitative response variables (see Bak, 2017). A linear regression model (2) can be considered as:  

}+ = {& + ∑ {4!+4%
4,* + À+          À+~Õ(0, ù6)						                                   (9) 

Where b+ ∈ œ is the response variable and !+ = (!+*, !+6, … , !+%) is a vector that has (V) predictor values 
for subject (N) and N = 1,2, … , /, for a given sample size of n. The Lasso seeks out a model that 
minimizes the sum of squares of residuals ∑ À+6!

+,* , subject to a constraint ∑ ¤{4¤ ≤ ‹%
4,*  where ‹ > 0 is 

a parameter that determines the amount of shrinkage applied to the coefficients and allows the model to 
be cleaned up (irrelevant variables from the model) by setting some {s to zero.  
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The Lasso estimate of {ÿ = ({ÿ&, {ÿ*, … , {ÿ%) is given by 

{ÿ = .C›min
O
fi∑ (}+ − {& −!

+,* ∑ {4!+4)6%
4,* fl 						,. ‹	 ∑ ¤{4¤%

4,* ≤ ‹									             (10) 

Here, the smaller value of t will shrink coefficients more toward the origin and make more of the 
coefficients to be zero. Therefore, the Lasso penalty performs variable selection continuously as the t 
continuously increases or decreases. Note that the optimization problem in equation (2) can be rewritten 
in Lagrange function that the Lasso estimates of {ÿ = ({ÿ&, {ÿ*, … , {ÿ%) minimize a penalized Residual sum 
of squares is provided by 

{ÿPQ33R = .C›min
O
fi∑ (}+ − {& −!

+,* ∑ {4!+4)6%
4,* + P∑ ¤{4¤%

4,* fl = œ]] + P∑ ¤{4¤%
4,* 													       (11) 

Reversely, the larger value of the tuning parameter P, the greater amount of shrinkage, more coefficient 
is set to zero, and thus a more parsimonious model is achieved. The choice of P that optimizes the 
predictability of the fitted model by Lasso is obtained by the cross-validation procedure (Bak, 2017). 

5. RIDGE REGRESSION  
Ridge regression is not a new concept in the field of education . It has been used as an alternative 

prediction weighting technique to non-ordinary least squares (OLS) (see Walker, 2004) . Ridge 
regression is a technique for analyzing and treating multicollinearity after testing multicollinear data in 
multiple regression models . When predictor variables have a correlation among themselves, this is 
known as multicollinearity. Ridge regression seeks to reduce the standard error by adding some bias to 
the fisher information matrix . The reliability of regression estimates is greatly improved when the 
standard error is reduced . Ridge regression is a type of linear regression in which we introduce a little 
amount of bias, known as the Ridge regression penalty, so that we can get better long-term predictions, 
it’s known as the L2 -norm in statistics. 

When there are more predictor variables in a data set than there are observations, or when there is 
multicollinearity, least squares estimates are unbiased, but their variances are enormous, therefore they 
may be far off the true value . Ridge regression reduces standard errors by adding a degree of bias to the 
regression estimates . It is hoped that the net effect will be to provide more dependable estimates . The 
covariates (the columns of X) are super-collinear when the design matrix is high-dimensional . In 
regression analysis, multicollinearity refers to the situation where two (or more) covariates are highly 
linearly connected . As a result, the collinear subspace may not be (or may be close to not being) of full 
rank . Consequently, the subspace spanned by collinear may not be (or close to not being) of full rank. 
The function is changed in this method by including a penalty term (shrinkage term), which multiplies 
the lambda by the squared weight of each unique feature . As a result, the optimization function becomes:  

{ÿS+TUV = .C›min
O
fi∑ (}+ − {& −!

+,* ∑ {4!+4)6%
4,* + P∑ {46%

4,* fl = œ]] + P∑ {46%
4,* 													             (12) 

Which is equivalent to minimization of RSS subject to, for some > > 0 , ∑ {46 < >%
4,*  . constraining the 

sum of the squared coefficients. Writing this criterion in matrix form we have:   

œ]](P) = (b − !{)N(b − !{) + P{N{ 

Then the result is the Ridge regression estimator as:     {ÿS+TUV = (!N! + P◊))*!Nb														         (13)   
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6. LASSO REGRESSION VERSUS RIDGE REGRESSION  

Lasso regression and Ridge regression are used to reduce the model's complexity . Ridge regression is 
also known as L2 Regularization and Lasso linear regression is known as L1 Regularization . But first, let's 
distinguish between ridge and lasso regression . To obtain long-term forecasts, ridge regression introduces 
a modest amount of bias. By adding the penalty term, this amount of bias is known as the Ridge regression 
penalty . The absolute weights are contained in the penalty term in Lasso regression . As a result of the use 
of absolute values, the Lasso might decrease closer to the slope than ridge regression, which shrinks 
towards zero. 

One variable is kept in Lasso linear regression, while the other correlated variables are set to zero . 
As a result of the loss of information, accuracy suffers . Ridge regression is frequently referred to as a 
Lasso regression example . As a result, it's clear that Lasso and ridge regression each have their own set 
of benefits . With the help of automatic variable selection for the models, Lasso eliminates the 
coefficients (shrinks to zero), whereas ridge regression is unable to do so . Both strategies, however, deal 
with over-fitting, which is a problem in realistic statistical models . The availability of data for machine 
learning is critical to the effectiveness of these techniques . Ridge regression is more efficient than Lasso 
regression, but Lasso is successful in eliminating the unwanted parameters present in the model 
(Melkumova and Shatskikh, 2017). 

the Figure 1. helps us to understand better, where we will assume a hypothetical dataset with only 
two features. Using the constrain for the coefficients of Lasso and Ridge regression, the constraint 
regions for Lasso and Ridge regression are plotted with cyan and green colors for a two-dimensional 
feature space . Linear regression is responsible for the elliptical contours (eq. 4 and 5). If the coefficients 
are relaxed, the constrained region can expand and eventually reach the ellipse's center . When the 
findings of Lasso and Ridge regression resemble those of linear regression, this is the case . Otherwise, 
both approaches calculate coefficients by finding the first point where the elliptical contours intersect 
the constraint region . In contrast to the disk, the diamond (Lasso) has corners on the axes, and whenever 
the elliptical region hits such a point, one of the features completely vanishes. For higher dimensional 
feature space, there can be many solutions on the axis with Lasso regression, and thus only the most 
important features are selected. 

Now we'll compare the shrinkage methods by examining the geometry of Lasso and Ridge 
regression. The estimation problem for both methods is shown in the figure below, when just two 
predictors are available . The circular outlines centered around the OLS estimate show locations where 
the RSS is constant, and the figure displays the constraint region from equations (7 and 8) . The location 
where the elliptical contour intersects the constraint region is found by both regression methods. Lasso 
has a diamond-shaped constraint region given by |{*| + |{6| ≤ ‹. whereas Ridge regression has a circle-
shaped constraint region defined by {*6 + {66 ≤ >. In the case of Lasso, one of the coefficients {4 is equal 
to zero if the contour crosses the diamond at a corner (Matthias & Emmert-Streib, 2019) 

TABLE 1. Overview of regularization or penalty and methods 

Methods  Regularization Term  
Ridge regression  L2 norm: ‖{‖6 
Lasso regression L1 norm:  ‖{‖* 
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FIGURE 1. Lasso and Ridge geometrical interpretation: elliptical contours as the contours of errors and 
constraints for Lasso |{*| + |{6| ≤ ‹ and Ridge {*6 + {66 ≤ > (Matthias & Emmert-Streib, 2019) 

7.  DATA COLLECTION  
The dataset of Corona virus epidemic (Covid-19) was taken for this study, which has affected on 

the world life totally. Especially in our region (Kurdistan), where life has changed in unexpected 
significantly way and millions of people have suffered from this dangerous disease. So, Influenza and 
the Covid-19 virus both display a similar disease presentation. In other words, they both cause 
respiratory disease, which can present as a variety of illnesses ranging from asymptomatic or mild to 
severe disease and death . Both viruses can spread through touch, droplets, and spores . As a result, 
everyone may prevent infection by practicing the same public health precautions, such as hand washing 
and proper respiratory hygiene (coughing into your elbow or into a tissue and throwing the tissue away 
right away) are important actions all can take to prevent infection. So, the speed of transmission is only 
important point of difference between the two viruses. When compared to Covid-19, influenza has a 
shorter median incubation period (the gap between infection and the onset of symptoms) and serial 
interval (the space between subsequent occurrences). Used the data of (263) case and have been taken 
in 2020, the information of each person gathered individually who suffered from this dangerous disease 
during this year. The dependent variable was (duration or number of sick daily injured and the 
independent variables were (Gender, Age, causes, does has other disease, in what way (he or she) got 
the disease, take the treatment, the result of disease (dead or alive)). 

8. APPLICATION, RESULTS AND DISCUSSION  
The Lasso regression analysis is a technique used in statistics and machine learning that performs 

both variable selection and regularization to improve the predictability accuracy and understandability 
of the resulting statistical model . When the subspace (which Y is projected) is close to rank deficient. It 
is almost impossible to separate the contribution of the individual covariates. The fit of the linear 
regression model to the data is frequently characterized by a significant inaccuracy in the estimates of 
the regression parameters corresponding to the collinear covariates, which reflects the uncertainty 
regarding the covariate responsible for the variance explained in Y. (Wieringen, 2015) . In regularization, 
we typically maintain the same number of features while reduce the coefficients' magnitudes . By using 
a variety of regression techniques that make use of regularization, we can reduce the magnitude of the 
coefficients. 
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TABLE 2. Least Squares vs Ridge and Lasso regression comparison 

Table 2. shows the results of fitting a multiple linear regression model of LS, Ridge and Lasso regression 
to describe the relationship between the duration (number of sick days) and (7) of independent variables 
which describing them in the data collection part above, these three methods provide different results. it 
illustrates the Regular estimated values of the regression of each method. Additionally, it provides the 
estimated Standardized Regression Coefficient values for each method . The coefficients that would result 
from standardizing each independent and dependent variable are the standardized regression coefficients 
for each method . Here, standardization is described as dividing by the standard deviation of a variable and 
subtracting the mean from it . These standardized coefficients would yield from a regression study on these 
standardized variables. The formula for the standardized regression coefficient is: 

{ÿ43LT. = {ÿ4 k
X+&
X,
m													                                             (14) 

Where ]Y and ]Z& are the standard deviations for the dependent variable and the corresponding ÉLM 

independent variable. Also, in the table above shows the estimated error of the regression coefficient 
]. L({ÿ4), it is the standard deviation of the estimate, whoever the standard error of the estimate reduces, it 
makes the estimates more precise. Here, Lasso standard error of the estimates (yellow color column) has 
the values less than Ridge and LS standard error of the estimates in table 2.  

TABLE 3. the testing hypotheses and dependency problem in the explanatory variables 

Variables VIF VIF VIF 

Variables 

Regular 
LS  

Coeffici. 

Standar
dized 
LS  

Coeffic
i. 

LS 
Standar

d 
Error 

Regular 
Ridge 

Coeffic
i. 

Standard
ized 

Ridge 
Coeffici. 

Ridge 
Standar

d 
Error 

Regular 
Lasso 

Coeffici. 

Standard
ized 

Lasso 
Coeffici. 

Lasso  
Standar

d  
Error 

Intercept 9.09396
3 

------- 6.13941
6 

9.19879 ------ --------    

Gender- X1 -1.32163 -0.0491 1.67572 -
1.31357 

-0.0488 1.66718
9 

-1.26287 -
0.04694

0 

1.67915
3 

Age - X2 0.09000
4 

0.1018 0.05811
2 

0.08929 0.1010 0.05775
1 

0.12730 0.14398
3 

0.05249
6 

Cause -X3 0.71075
3 

0.0451 1.00491
4 

0.70845 0.0449 0.99936
0 

1.182839 0.07504
5 

0.95525
5 

Other disease- 
X4 

-1.44385 -0.0460 2.20781
7 

-
1.43019 

-0.0455 2.19166
4 

-1.14771 -
0.03653

1 

2.20386
7 

In what way- X5 1.90879
3 

0.1112 1.2426 1.89172 0.1102 1.23242 2.606488 0.15181
3 

1.15254
6 

take treatment - 
X6 

3.44748
5 

0.1199 2.06808
2 

3.41144 0.1186 2.05126 4.486400 0.15599
6 

1.95004
7 

Result- X7 5.20158
3 

0.0777 4.51461
6 

5.17289 0.0772 4.48553
1 

9.868086 0.14732
6 

3.24122
4 
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     LS  Ridge Lasso 
Gender- X1 1.0323 1.0214 1.89057 
Age - X2 1.3996 1.3749 8.04846 

(*) 
Cause -X3 1.0456 1.0343 5.59775 

(*) 
Other disease - 
X4 

1.4436 1.4177 1.69566 

In what way - 
X5 

1.5317 1.5017 11.0564 
(*) 

take treatment - 
X6 

1.5700 1.5380 1.77009 

Result - X7 1.1991 1.1833 14.6705 
(*) 

(*): represents the existence of multicollinearity when the value of VIF Lasso higher than (5). 

To check the presence of dependency between the independent variables look the table 5. of correlation 
matrix and used VIF, in table 3. expresses three models for regression and tested their multicollinearity 
problem, shows that the Lasso model under investigation has this issue (problem). The Variance 
Inflation Factor (VIF), which assesses the inflation of the parameter estimates for all explanatory 
variables in the model, was used to identify the causal variables (see Farrar & Glauber, 1967), the VIF 
measures the presence of multicollinearity, and computed as follows:  

v◊ä4 =
*

*)S&
) =

*

NR[V#Q!;V
  ,    v◊ä = (1 − œ46))*   ,  É = 1,2, … , V									                     (15) 

using the v◊ä4 is one method for detecting multicollinearity in regression data. Where the more 
likely of multicollinearity among the variables is indicated by a lower tolerance. When v◊ä4 = 1, it 
represents that the independent variables are not correlated with one another.  if the value of  1 < v◊ä4 <
5 , It indicates that there is a moderate correlation between the variables. The difficult range for  v◊ä4 is 
between 5 and 10, which indicates the range of highly correlated variables . It means v◊ä4 	≥ 5	‹°	10, 
there will be multicollinearity among the regression model's predictors, and if v◊ä4 > 10 the regression 
coefficients for the regression matrix X are only tentatively estimated in the presence of multicollinearity 
(see Shrestha, N., 2020). In our results of analyzing these three methods the variables suffer from 
inflation in the variance of their parameters variables as showed in table (3) of (VIF Lasso), the 
explanatory variables ( !6, !\, !],!^) have high value of VIF, where !6, !\ have value between 
5 < v◊ä4 < 10 , and !] , !^ have a VIF  value  greater than 10  for large datasets indicates a 
multicollinearity problem. 
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-A- 

 

-B- 

 
 

FIGURE 2. Ridge coefficient path for the data set found in NCSS 

Choosing an acceptable value of K, is one of the key challenges in using Ridge regression (see 
Hoerl, and Kennard,1970). The Ridge Trace, a diagram created by the Ridge regression's creators, was 
recommended. The Ridge regression coefficients are plotted here as a function of K. The analyst selects 
a value of k for which the regression coefficients have stabilized while looking at the Ridge Trace (see 
figure 2.). Often, for low values of k, the regression coefficients frequently exhibit large fluctuations 
before stabilizing. Select the least value of k that results in the smallest amount of bias and causes the 
regression coefficients have seem to remain constant . Be aware that as k increases, eventually drive the 
regression coefficients to zero. 

The figure (2. -A-) shows that these lines are for different explanatory variables and which of them are 
significant predictors of Y in above dataset. Additionally gives the standardized regression coefficients 
for Ridge parameter values in the range of 0.0 to 0.1. These are the regression model's coefficients when 
the variables are expressed in standardized form. The coefficients frequently shift considerably at first 
as the Ridge parameter is increased from zero but subsequently tend to stabilize. The smallest value 
after which the estimates shift gradually (change slowly) is a good value for the Ridge parameter. Your 
coefficients will be penalized by the ridge regression, and those that you estimate to be least useful 
(effective) will decrease the quickest. 

The variance inflation factors for each of the regression model's coefficients are displayed in Figure (2. 
-B-). In comparison to the case in which all independent variables are uncorrelated, the variance inflation 
factors quantify how much the variance of the predicted coefficients is inflated. The VIFs frequently 
decline sharply (decrease dramatically) when the ridge parameter is increased from 0, but after that they 
tend to stabilize. The smallest value after which the VIFs change slowly is a suitable value for the ridge 
parameter. Press the alternative mouse button and choose Analysis Options to alter the range of ridge 
parameters investigated . When there is a multicollinearity problem between the independent variables, 
the Ridge regression model is based on estimation of the model parameters. If the value of (k=0), the 
same estimators as in the LS are obtained, where the Ridge regression coefficients are (k) . But, when 
the value of (k) increases away from zero, we observe the stability of the estimators as their values 
change. At (k=0.005), the results demonstrate that the level of the VIF of Ridge model for the 
explanatory variables are shown as in the figure above. 
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TABLE 4. the results of three estimation procedures 

Methods Std. Error of 
the Estimate 

F-Ratio 
test p-value Adj R2 MES 

LS regression 13.4022 0.4850 0.8433 0.48094 % 170.0295 
Ridge 

regression 
13.2406 0.4898 0.8448 0.580893% 170.0563 

Lasso 
regression 

13.1766 3.691 0.0440(*) 0.601661% 167.9220 

(*) indicate significant of Lasso regression model at the 5%  

Table 4. expresses standard deviation of estimate, F-test, P-value, Adjusted R2 and MSE values. The 
results of applied OLS and Ridge and Lasso method are shown above, these techniques provide different 
outcomes, and the approach we suggest provide the smallest value by minimizing the sum squared of 
errors using the value of k rather than LS, which results in the value of MSE. it can be seen that the P-
value of LS method and Ridge method are greater than 0.05, it means not significant statistically 
relationship between the variables at the 95% or higher confidence level. Consequently, the researcher 
should consider removing variable that is not significant from the model. The adjusted œ6 statistic is 
more suitable for comparing different multiple models with different numbers of independent variables. 
The adjusted œ6 = 0.60166 of Lasso regression model shows that 60.166%	gives how effectively the 
model generalizes in comparison to other models. The value of F ratio test of measures the statistical 
significance of the Lasso model equal to (3.691) and MSE of Lasso has small value equal to (167.9220), 
F-test value is statistically significant at (- − ‚.„‰ê	 < 0.05) , (0.044 < 0.05) and it can be observed 
that from the table above. Totally, the results of analyzing data by Lasso regression model obtained 
better than two other models.  

TABLE 5. Correlations matrix 

varva Gender Age Cause 
Other 

disease 
In.what.w

ay 
take 

treatment 
Result 

Gender- X1 
Pearson 
Correlatio
n 

1 .046 .001 .090 .017 .006 .079 

Age - X2 
Pearson 
Correlatio
n 

.046 1 .124* .312** -.116 .009 -.150* 

Cause -X3 
Pearson 
Correlatio
n 

.001 .124* 1 .161** -.028 .126* -.189** 

Other disease - 
X4 

Pearson 
Correlatio
n 

.090 .312** .161** 1 -.277** .284** -.283** 
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In what way - 
X5 

Pearson 
Correlatio
n 

.017 -.116 -.028 -.277** 1 -.467** .288** 

take treatment - 
X6 

Pearson 
Correlatio
n 

.006 .009 .126* .284** -.467** 1 -.224** 

Result - X7 
Pearson 
Correlatio
n 

.079 -.150* -.189** -.283** .288** -.224** 1 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

9. CONCLUSIONS 

The statistical analysis of Lasso and Ridge regression estimation as an alternative method to LS 
regression estimation for the data leads to the following conclusions: 

1. whoever the standard error of the estimate reduces, it makes the estimates more precise. As it seen 
in standard error of the estimates of Lasso has the smallest values when compared with Ridge and 
LS standard error of the estimates. 

2. In presence of multicollinearity used VLF measurement, shows that Lasso regression method has 
more powerful to checking this problem between explanatory variables while the other methods 
haven’t this power because in Lasso method found 5 explanatory variables with high dependency 
value of VIF among 7 of explanatory variables, Lasso method is investigated the relationship 
between variables for the real dataset. this problem could be improved by adding more cases in to 
the data, increasing the sample size of the data set. 

3. The estimators used in the LS regression are the same as those found in the Ridge regression 
coefficients if the value of (k=0). But when the value of (k) moves away from zero, we observe that 
the estimators' stability increases. At (k=0.005) the results indicate the level of the VIF of Ridge 
model for the explanatory variables, at this value of (k) found it the best estimates of the model. 

4. It observed that the proposed Lasso method is more significant than the classical LS method and 
Ridge method, depend on the value of p-value of the F-test and decrease value of MSE.  

5. Increase the value of Adj R2 of Lasso method leads that it will be more appropriate method than the 
other for this data. 

6. The estimation method of LS and Ridge regression method provides almost similar results, while 
the Lasso estimation method is able to produce consistent and more efficiency coefficients results 
depend on that criterion used in this study.  
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