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A B S T R A C T: 
This paper is devoted to studying the stability of the unique equilibrium point and the occurrence of the Hopf bifurcation 

as well as limit cycles of a three-dimensional chaotic system. We characterize the parameters for which a Hopf equilibrium point 
takes place at the equilibrium point. In addition, the system has only one equilibrium point which is [# = (0,0,0). It was proved 
that [# is asymptotically stable and unstable when ] < =5>

?
 and ] > =5>

?
, respectively. Moreover, for studying the cyclicity of the 

system, two techniques are used which are dynamics on the center manifold and Liapunov quantities. It was shown that at most two 
limit cycles can be bifurcated from the origin. All the results presented in this paper have been verified by a program via Maple 
software. 
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1. INTRODUCTION: 
We consider the following system of differential equations 
 

Tz

TL
	= du + 	ä(u, K)                                                                       (1) 

 
where variable u ∈ ℝ\, ä is an analytic function, parameter K ∈ ℝ% and 	d  is the square matrix has two 
complex eigenvalues E ± N{		({ ≠ 0) and a non-zero eigenvalue E, such that  ä(0; K) = Hz(0; K) = 0			∀K, 
where Hz(0; K) is the determinant of Jacobian matrix of ä(u; K)		.‹	u = 0. 
     A sufficient condition of Hopf bifurcation for the three-dimensional system (1) (having a nonzero with 
two pure imaginary eigenvalues) is illustrated below: 
 Let  

P\ − '	P6 − Ê	P − H = 0                                                                (2) 
 

be the characteristic polynomial of the linearized system (1) at the origin, where  
 

												'	 = ∑ .+,+	\
+,*     (Trace of the Jacobian matrix of system (1)	at the origin), 

H	 = Determinant of the Jacobian matrix of system (1)	at the origin, 
			Ê	 = −	(d* 	+ 	d6 +	d\);																																																																																                    

 
where  d+ = .4,4.%,% − .4,%.%,4	, N, É, V = 1,2,3, N ≠ É ≠ V are elements of the Jacobian matrix of system (1)	at 
the origin [1],  [2] and [3]. Then, the Hopf bifurcation takes place at a point (which is called a Hopf point)  
where 
 

'Ê + H = 0				(' ≠ 0		&		Ê < 0)                                                         (3) 
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Moreover, suppose that system (1)	has a critical point (‰&, K&), then this system has a Hopf bifurcation 
if H{O(‰&, K&) has a simple pair of pure imaginary eigenvalues with no other eigenvalues with zero real parts 

and 
T

T|
	œê(P6,\	(K	))||	,	|@ =  ≠ 0	 are satisfied, where  œê(P6,\	(K	)) denotes the real part of the complex 

eigenvalues which is smooth function of K	. Then, there is a unique three-dimensional center manifold passing 
through  (‰&, K&) in ℝ\ × ℝ  and a smooth system of coordinates (preserving the planes µ = >°/,‹. )	for which 
the Taylor expansion of degree three on the center manifold is given by 
 

		

⎝

⎜
⎛

	
‰̇
	
	
‚̇
	⎠

⎟
⎞
=

⎝

⎜
⎛

	
`	K + .	(‰6 + ‚6)a	‰ − `U + >	K + D	(‰6 + ‚6)a	‚

	
	

`U + >	K + D	(‰6 + ‚6)a	‰ + `	K + .	(‰6 + ‚6)a	‚
	 ⎠

⎟
⎞

                             (4) 

 
If .	 ≠ 0, there is a surface of periodic solution in the center manifold which has quadratic tangency with 

the eigenspace of P		`K	&a, P		`K	&a
^̂ ^̂ ^̂ ^̂ ^ agreeing to second order with the parabolic K		 = − Q

T
	(‰6 + ‚6). If . < 0, 

then these periodic solutions are stable limit cycles, the bifurcation is of type Supercritical Hopf bifurcation. 
While if .	 > 0, the periodic solutions are repelling (unstable limit cycles), the bifurcation is of type 
Subcritical Hopf bifurcation [4] and [5].  

By the time rescaling V	 = 	{‹ and a linear change of coordinates, system (1)	can be written in the form 
 

		

⎝

⎜
⎛

‰
	
‚
	
̇

̇

á̇	 ⎠

⎟
⎞
=

⎝

⎜
⎛

E*‰	 − 	‚
	

E*‚	 + 	‰
	
P	á	 ⎠

⎟
⎞
+

⎝

⎜
⎛

ä*(‰, ‚, á; K)
		

ä6(‰, ‚, á; K)
	

ä\(‰, ‚, á; K)	 ⎠

⎟
⎞
																																																										(5) 

                                  
where E* =

7

O
	 , P = _

O
	, ä+(‰, ‚, á; K) = ∑ ä+%(‰, ‚, á; K)	,:

%,6 N = 1,2,3		./			ä+%(‰, ‚, á; K) are polynomials 

that are homogeneous of degree k. The Hopf point at the origin of equation (5) has two pure imaginary 
eigenvalues, ±N , and a nonzero eigenvalue P when E* = 0. A good source of Hopf bifurcation in ℝ! is [6].  
At E* = 0, system (5)	can be written of the following form   
 

⎝

⎜
⎛

‰
	
‚
	
̇

̇

á̇	 ⎠

⎟
⎞
=

⎝

⎜
⎛

−	‚
	
	‰
	
P	á	 ⎠

⎟
⎞
+

⎝

⎜
⎛

ä*(‰, ‚, á; K)
		

ä6(‰, ‚, á; K)
	

ä\(‰, ‚, á; K)	 ⎠

⎟
⎞
																																																																			(6)				 

 
where	ä*, ä6	and	ä\ are real analytic functions on the neighborhood of the origin in ℝ\ and with their 
derivatives vanish at the origin. Since system (6)	has two eigenvalues with zero real part E* = 0, then  system 
(6)	has a local 2-dimensional centre manifold, ~;(0) [7]. This manifold is invariant and there exists a 
function ℎ	of class  Mb , V	 ≥ 	1 in a small neighbourhood of the origin such that ℎ(0, 0; 	µ) 	= 	H	ℎ(0, 0; 	µ) 	=
	0, where H	ℎ(0, 0; 	µ)	 is a Jacobian matrix of  ℎ at the origin. The 2-dimensional centre manifold, ~;(0), is 
defined by  
 

~;(0) = 	 {(‰, ‚, ℎ(‰, ‚; 	µ); 	µ) ∈ ℝ\ ∶ (‰, ‚) ∈	a small neighborhood of the origin} 
 

In the third component of equation (6), after inserting  á = ℎ(‰, ‚; 	µ)  and using the chain rule, the 
following equation is obtained, which is useful to find the function ℎ. 
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H	ℎ(0, 0; 	µ) k
−‚ + ä*(‰, ‚, ℎ(‰, ‚; 	µ); K)
‰ + ä6(‰, ‚, ℎ(‰, ‚; 	µ); K)

m = P	ℎ(‰, ‚; 	µ) + ä\(‰, ‚, ℎ(‰, ‚; 	µ); K)                    (7) 

 
In the first two components of equation (6), after substituting á = ℎ(‰, ‚; 	µ), the following reduced 

system to the center manifold is obtained; its linear part is of center-focus type. 
 

⎝

⎜
⎛

	
‰̇
	
	
‚̇
	⎠

⎟
⎞
=

⎝

⎜
⎛

	
−‚
	
	
‰
	 ⎠

⎟
⎞
+

⎝

⎜
⎛

	
ä*(‰, ‚, ℎ(‰, ‚; 	µ); K)

	
	

ä6(‰, ‚, ℎ(‰, ‚; 	µ); K)
	 ⎠

⎟
⎞

                                                             (8) 

 
To find the Liapunov quantities of system (8), we seek a Lyapunov function of the form  

v(‰, ‚) = ‰6 + ‚6 +' v}(‰, ‚; K)
!

%,\

																																																																							(9) 

where v} is a polynomial in ‰, ‚ of degree V and the coefficients of  v} satisfy  
 

χ(v) = Y6	C6 +	Y@	C@ + YD	CD +⋯+ Y6+	C6+																																																									(10) 
 

where	C6 = ‰6 + ‚6 or  ‰6 or ‚6 or (‰6 + ‚6)6  or other suitable forms and Z is the vector field of system	(8).  
Here, Y6+ , N = 	1, 2, 3, …			is a polynomial in the parameter K of the system also called the NLM Liapunov 
quantity, for more detail see ([8],[9] and [10]). 
In this paper, we study the following non-linear system of differential equations 
 
                                                           *̇ = −X, 
                                                           }̇ = −* − X,                                                                                                   (11) 
                                                           Ẋ = 2* − *\

*&
	} + E	X + *6 + {	X6 − *X,                                        

 
which was introduced in 2014 by Lao and Sprott, where *, } and X are variables and E, { are parameters in ℝ 
[11]. This system is simplest electronic circuit, it is significant and used in mathematics, physics and 
engineering applications. Lao et al. have explained the simplest electronic circuit design. This circuit design 
consists of multipliers, integrator, amplifier and inverting amplifier. A new cost function base on Gaussian 
mixture model has been studied for parameter estimation of system (11) in [11]. Muhammed  has investigated 
the non-integrability of system (11) and have proved that system (11) for any value of the parameters E and 
{ has no polynomial, Darboux, rational and analytic first integrals. Also, system (11) has two exponential 
factors êZ	and êY	with cofactors	−X and	−* − X, respectively and has no invariant algebraic surfaces with 
nonzero cofactors. In addition, the dynamics at infinity for system (11) is analysed by using the theory of 
Poincaré compactification in	ℝ\ [12]. According to our knowledge, the Hopf bifurcation and limit cycles for 
the system have not studded. 
     In this paper, Hopf bifurcation theorem and Liapunov quantities for finding limit cycles of system (11) are 
used. It was shown that one stable limit cycle can be bifurcated from the origin when { >
*

*6^@
`204 + 	√204506a	or	{ < *

*6^@
`204 − 	√204506a.  Moreover, by finding Liapunov quantities, it was 

shown that at most two limit cycles can be bifurcated from the origin when { = *

*6^@
(204± 	√204506). Of 

course, it is important to give an analytical proof for this result.  
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2. STABILITY ANALYSIS: 
In this section, the stability of the unique equilibrium points at the origin of system (11) is presented. 

It is easy to see that system (11) has a unique equilibrium L& = (0,0,0). By linearization around L&, the 
Jacobian matrix of system (11) is given by 
 

&	(L&) =

⎝

⎜⎜
⎛

0 0 −1
	 	 	
−1 0 −1
	 	 	

2 −
13
10 E ⎠

⎟⎟
⎞

 

It’s characteristic equation at L& is given by 
 
                                                                         P\ − '	P6 − Ê	P − H = 0                                                                (12) 
 
where  ' = E, H = )*\

*&
	,and	Ê = )^

*&
. The Hurwitz matrix of the characteristic polynomial of system (11) is:  

 

<\ =

⎝

⎜⎜
⎜
⎛

	−E 1 0
	 	 	
13
10

7
10 −E

	 	 	

0 0
13
10⎠

⎟⎟
⎟
⎞

 

 
 
The principal diagonal minors are ∆*= −E, ∆6=

)*

*&
(	7	E + 13	) and 		∆\=

)*\

*&&
(	7E + 13	). 

 
Proposition 1. 
I) The equilibrium point L&	is locally asymptotically stable if and only if E < )*\

^
.  

II) The equilibrium point  L&	 is unstable if and only if  E > )*\

^
. 

Proof:  
I) Suppose that L&	is locally asymptotically stable, then equation (12) has no roots with positive real parts 

[13]. Since H = )*\

*&
≠ 0 and   'Ê + H = 0		if and only if 	E = 	)*\

^
,  then equation (12) has no zero roots and 

has no pure imaginary roots for E ≠ )*\

^
, respectively. From above we can obtain that, equation (12) has no 

roots with zero real parts.  Thus, equation (12) has all roots with negative real part when E ≠ )*\

^
, then ∆*	>

0, ∆6	> 0, and		∆\	> 0. Therefore E < )*\

^
, is obtained. 

Conversely, suppose that E < )*\

^
, this implies that  −E > 0, )*

*&
(	7	E + 13	) > 0, and		)*\

*&&
(	7E + 13	) > 0 

, then  ∆*	> 0, ∆6	> 0, and		∆\	> 0. Thus, by Routh-Hurwitz’s theorem all roots of equation (12) have 
negative real parts [14]. Therefore, L& is locally asymptotically stable (see Fig.1a).     
  
II) Suppose that L&	is unstable, then at least one roots of equation (12) has positive real part [15].  When  E ≯
)*\

^
, then E = )*\

^
	or	E < )*\

^
. 

• If  E = )*\

^
, then the roots of equation (12) are P* =

)*\

^
 and P6,\ = ± √^&

*&
N and non of them are 

positive, which is contradiction. 
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• If  E < )*\

^
, then by Proposition 1(I), L&	is locally asymptotically stable, which is contradiction.  

Therefore E > )*\

^
  (see Fig.1b). 

 

 
           (a)                                                                             (b) 

FIGURE 1. The phase portrait for system (11). (a) when  E = −2		&		{ = 1, L&	is asymptotically stable. 
(b) when E = 2		&		{ = 1, L&	is unstable. The green and red balls indicate the initial and equilibrium points, 

respectively. 
 Conversely, suppose that E > )*\

^
. Since H	and 	'Ê + H are not equal to zero, then equation (12) has no 

roots with zero real parts. 

The roots of equation (12) are P* =
~'
\&
− \&	~)

~'
+ 7

\
			and 	P6,\ = s− ~'

D&
+ *]	~)

~'
+ 7

\
t± N	√3	s~'

D&
+

*]	~)
~'

t.Where Ω* = 7	1000	E6 − 3150	E	– 	17550	 + 	30	^Ω\
A

	

,		Ω6 =
^

\&
− 7)

�
 and Ω\ = −3900	E\ −

3675	E6 ++122850	E + 352515. 
• When  Ω\ > 0, then the values of P* =

~'
\&
− \&	~)

~'
+ 7

\
  is positive, therefore	L&	is unstable (see Fig. 2 

and Figure. 3a). 

• When  Ω\ = 0, then the values of P* =
√*&&&	7))\*]&	7	–	*^]]&	
A

\&
−

\&	( B
A@
)C

)

D
)

√*&&&	7))\*]&	7	–	*^]]&	
A    and it is 

positive at the value of vanishing Ω\,		in this case P* ≈ 2.240, therefore	L&	is unstable.  
 

• When  Ω\ < 0, then the real part of P* is positive. Thus, L&	is unstable (see Fig. 2 and Fig. 3b).  ∎           
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FIGURE 2: The plot of Ω\, it is positive when E < 2.5427	, zero at E = 2.5427 and negative when 
E > 2.5427, approximately. 

 

 
                       (a)                                                                                 (b) 
 

FIGURE 3. (a) The plot of eigenvalue P* when Ω\ > 0 which is indicted in a green colour. (b) The plot of 
real part of P* when Ω\ < 0, shown in a green colour. The red dash line is the value of E = − *\

^
 and the 

blue dash lines indicates the value of E which vanishes Ω\. 
 

3.	HOPF	BIFURCATION	ANALYSIS	AND	LIMIT	CYCLES:	
In this section, the occurrence of Hopf bifurcation and bifurcated Limit cycles of system (11) are studied. 
 

Proposition 2. Equation (12) has two pure imaginaries with non-zero eigenvalues if and only if  E = )*\

^
. In 

this case the solutions of equation (12)  are  P* = − *\

^
, 	P6,\ = ±NU  where U = √^&

*&
. 

Proof:  Suppose that equation (12) has two pure imaginaries with non-zero eigenvalues. Then conditions (3) 
are satisfied.  

From equation (12),  ' = E ≠ 0,	Ê = 	)^
*&
< 0, H =	)*\

*&
	≠ 0 and  'Ê + H = )^

*&
	α− *\

*&
= 0 at E = 	)*\

^
. 

Therefore, E = 	)*\
^

. 
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 Conversely, suppose that  E = )*\

^
.  Let P* be the real solution and P6,\ = ±	NU  be complex solutions of 

equation (12). 
P* + P6 + P\ = '	 ⟹ P* =

)*\

^
    and    P*. P6. P\ = H	 ⟹ U = √^&

*&
. 

 
Therefore, equation (12) has two pure imaginaries with nonzero eigenvalues (see Fig. 4).                                        ∎ 
	 
 

 
 

FIGURE 4: The phase portrait for system (11) when E = )*\

^
	&		{ = 1, the green and red balls    indicate 

the   initial and equilibrium points, respectively. 
 
So, the first Hopf bifurcation theorem condition is fulfilled [4]. 
Nevertheless, a second condition of the Hopf bifurcation theorem must be fulfilled. In the simple way: 
 

T

T7
	œê sP6,\(E)t ≠ 0, 

 

where œê sP6,\(E)t is the real part of P6,\ which is a smooth function of E. 

 
Proposition 3. The derivative of the real part of complex solution of the equation (12) with respect to E at 

E = )*\

^
 is non-zero and equal to 

\@\

@&DD
, i.e., 

T

T7
(œê( P6,\(E)))b

7,*'A
B

=  = \@\

@&DD
≠ 0.    

Proof:  Since &	(L&) has two pure imaginary eigenvalues where E = )*\

^
, then for E near 

)*\

^
 two of the 

eigenvalues will be complex conjugates. Let	P6 = ‰ + N‚, P\ = P6^̂ ^ = ‰ − N‚ and P*	be eigenvalues and satisfy 
the following equation  

P\ − (2‰ + P*)	P6 + (|P6|6 + 2‰	P*)	P − |P6|6P* = 0			 (see [16]) 
 

Equating coefficients with equation (12) results are 
2‰ + P* = E,

	
|P6|6	P* =

−13
10 ,

	
|P6|6 + 2‰	P* =

7
10 .
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Thus, 
13

20	‰ − 10	E + 2‰	
(E − 2‰) =

7
10	, 

 
 implicitly differentiating ‰ = ‰(E), the following is obtained: 
 

‰Å =	
−20	E6‰ + 80	E‰6 − 80	‰\ − 13	

20	E\ − 160	E6‰ + 400	E‰6 − 320	‰\ − 26		, 
 
at 	E = )*\

^
  where œê`P6,\a = ‰ = 0 , we obtain: 

 
                         ‰Å =  = 	 \@\

@&DD
> 0	, áℎêCê	E = )*\

^
.		                                                                 ∎ 

 
So, the second condition of Hopf bifurcation theorem is fulfilled. Therefore, the Hopf bifurcation theorem 
holds. 
 
Theorem 1. Under the first and second conditions of Hopf Bifurcation. 
 
I) When { > *

*6^@
`204 + 	√204506a		or		{ < *

*6^@
(204 − 	√204506), the bifurcated limit cycle is unstable. 

II) When  { ∈ ( *

*6^@
(204 − 	√204506)	, *

*6^@
(204 + 	√204506)),  the bifurcated limit cycle is stable. 

 
Proof:  At first, we find the expression for the two-dimensional flow in the center manifold ~; at the 
bifurcation point. 
 System (11)	is transformed into the Canonical form by the following linear transformation. 
 

⎝

⎜
⎛

*
	
}
	
X	⎠

⎟
⎞
= ' 	 	

⎝

⎜
⎛

‰
	
‚
	
á	 ⎠

⎟
⎞
, áℎêCê			' =

⎝

⎜
⎜
⎜
⎛

13
20 1 1

1 1 −
√70
7 N 1 +

√70
7 N

169
140

√70
10 N

−	√70
10 N

	

⎠

⎟
⎟
⎟
⎞

 

After some calculations, the following system is obtained. 
 

⎝

⎜
⎜
⎜
⎜
⎛

‰
	
	

̇

	
‚
	
	

̇

	
á̇	 ⎠

⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

−13
7 ‰
	

−N√7010 	‚
	

N √7010 	á
	 ⎠

⎟
⎟
⎟
⎞

+

⎝

⎜
⎜
⎜
⎜
⎛

Φ*‰6 +Φ6‚6 + 	Φ6^̂ ^̂^	á6 +Φ\	‰‚ + 	Φ\^̂ ^̂^	‰á +Φ@‚á	
		
	

Φ]	‰6 +ΦD‚6 +Φ^	á6 +Φv	‰‚ +Φ�	‰á +Φ*&	‚á
	
	

	Φ]^̂ ^̂^	‰6 + 	Φ^^̂ ^̂^	‚6 + 	ΦD^̂ ^̂^	á6 + 	Φ�^̂ ^̂^	‰‚ + 	Φv^̂ ^̂^	‰á + 	Φ*&^̂ ^̂ ^̂ 	‚á	 ⎠

⎟
⎟
⎟
⎟
⎞

																				(13)					 

 
where 

Φ* =
1

28462
(28561	{ − 7098) 

Φ6 =
1

2033	d	
(1400 − 980	{) − 140	√70		N	e 

Φ\ =
1

2033	8	130 + 338	 k{ −
7
26m√70		N	f 
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Φ@ =
1

2033
(2800 + 1960	{) 

Φ] =
1

11384800	d	
(922740 − 3712930	{) + (49686 − 199927	{)√70		N	e 

ΦD =
1

11384800	d	
(1783600	{ − 3508400	) + (96040	{ + 117600)√70		N	e 

Φ^ =
1

11384800	d	
(1783600	{ − 1587600	) + (96040	{ − 392000)√70		N	e 

Φv =
1

11384800	d	
(2318680	{ − 860860	) + (152880 − 615160	{)√70		N	e 

Φ� =
1

11384800	d	
(387660	 − 2318680	{	) + (615160	{ − 178360)√70		N	e 

Φ*& =
−1

11384800	d	
(3567200	{ + 5096000	) + (192080	{ + 274400)√70		N	e 

According to the Center manifold theorem, the center manifold ~; is tangent to L; = ,-./{‚, á} at the origin [4]. 
Therefore, ~; can be approximated for the two variables ‚,á by the following equation: 
 

‰ = ℎ(‚, á) = ù*	‚6 + ù6	‚á + ù\	á6 + B(3)                                            (14) 
With 

‰̇ =
gℎ
g‚	‚̇ +

gℎ
gá	á̇																																																																															(15) 

 
It follows together with system (13) and equation (15) obtain: 
 

)*\

^
`ù*‚6 + ù6	‚á + ù\	á6 + O(3)a +	Φ*	`ù*‚6 + ù6	‚á + ù\	á6 	+ O(3)a6 +Φ6	‚6 +Φ6^̂ ^̂ 	á6 +

Φ\	`ù*	‚6 + ù6	‚á + ù\	á6 + O(3)a	‚ +Φ\^̂ ^̂ 	(ù*	‚6 + ù6	‚á + ù\	á6 	+ O(3))	á +	Φ@	‚á =
	(2ù*	‚ 	 + ù6	á	)	s−N

√^&

*&
	‚ +Φ]	(ù*	‚6 + ù6	‚á + ù\	á6 + O(3)	)6 +ΦD	‚6 +Φ^	á6 +

Φv	(ù*	‚6 + ù6	‚á + ù\	á6 + O(3)	)	‚ +Φ�(ù*	‚6 + ù6	‚á + ù\	á6 + O(3)	)	á +Φ*&‚át +

(ù6	‚ + 2ù\	á 	)	sN √^&
*&
	á +Φ]^̂ ^̂ 	(ù*	‚6 + ù6	‚á + ù\	á6 + O(3)	)6 +Φ^^̂ ^̂ 	‚6 +ΦD^̂ ^̂ 	á6 +Φ�^̂ ^̂ 	(ù*	‚6 +

ù6	‚á + ù\	á6 + O(3)	)	‚ +Φv	^̂ ^̂ 	(ù*	‚6 + ù6	‚á + ù\	á6 + O(3)	)á +
Φ*&	^̂ ^̂ ^̂ 	‚át																																									(16)			                                  
 
After comparison of the coefficient for  ‚6, ‚á, ./		á6 in equation  (16),  one can find expressions for  
ù*, ù6	./	ù\.	   
 

ù* =
1

3112523 h
(1117200 − 445900	{) − N	 ˝63700√70 +

7√70
5

(34300	{ − 49000)	˛i 

ù6 =
1

26429	
(13720	{ + 19600)	 

ù\ =
1

3112523 h
(1117200 − 445900	{) + N	 ˝63700√70 +

7√70
5

(34300	{ − 49000)	˛i 

 
We substitute the values of ù*, ù6 and ù\  in equation (3.2) and obtain: 

 

‰ =
1

3112523 [
(1117200 − 445900	{) − N	(63700√70 +

7√70
5

(34300	{ − 49000)	)]	‚6 
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							+	
1

26429	(13720	{ + 19600)	‚á +
1

3112523 [
(1117200 − 445900	{) + N	(63700√70 

						+ ^√^&

]
(34300	{ − 49000)	)]	á6. 

After inserting the value of ‰	into the equations for ‚,á in equation (13), an approximated expression for the 
flow in the centre manifold is obtained: 

⎝

⎜
⎛

‚
	
	
	
á̇

̇

	 ⎠

⎟
⎞
=

⎝

⎜
⎜
⎜
⎛

	

−N
√70
10 	‚
	
	

N
√70
10 	á
	 ⎠

⎟
⎟
⎟
⎞

+

⎝

⎜
⎜
⎛

	
Ψ*	‚6 +Ψ6	‚á +Ψ\	á6

	
	
	

Ψ\^̂^̂ 	‚6 +Ψ6^̂^̂ 	‚á +Ψ*^̂^̂ 	á6

	 ⎠

⎟
⎟
⎞
+ B(3)																																					(17) 

Where 

Ψ* =
7

40660 d	
(910	{ − 1790) + N	(49	{ + 60)	√70	e 

Ψ6 =
−7

20330 d	
(910	{ + 1300) + N	(49	{ + 70)	√70	e 

Ψ\ =
7

40660 d	
(910	{ − 810) + N	(49	{ − 200)	√70	e 

By removing all the redundant non-linear terms of equation (17), the simplified expression for the flow in the 
centre manifold is obtained. The simplest expression is called the normal form which still contains all information 
about the qualitative behavior of the system at the bifurcation point. With a further linear coordinate 
transformation, system (17) can be rewritten into a form which is called standard form. 
With 

⎝

⎜
⎛

	
‚
	
	
á
	 ⎠

⎟
⎞
= '

⎝

⎜
⎛

	
p
	
	
q
	⎠

⎟
⎞
, áℎêCê ' =

⎝

⎜
⎛
	

1 −N
	 	
	 	
	 	
1 N ⎠

⎟
⎞

 

 
After some calculations, the following system is obtained. 
 

⎝

⎜
⎛

-
	
	
	
Â̇

̇

	⎠

⎟
⎞
=

⎝

⎜⎜
⎛

	
− √^&

*&
	Â

	
	

√^&

*&
	-
	 ⎠

⎟⎟
⎞
+

⎝

⎜
⎜
⎛

	
O(-, Â)
		
	
	

›(-, Â)
	 ⎠

⎟
⎟
⎞
	                                                   (18) 

where 

O(-, Â) = φ*	-6 −
√^&

*&
φ*	-Â + φ6	Â6 + φ\	-\ + √70	φ@		-6Â + φ]	-Â6 +	√70	φD	Â\ + φ^	-@ +

																		√70	φv	-\Â + 	φ�	-6Â6 + √70	φ*&	-	Â\ +	φ**	Â@.   
 

›(-, Â) = )^√^&

*\&
	φ*	-6 +

@�

*\&
	φ*	-Â −

^√^&

*\&
φ6	Â6 −

^√^&

*\&
φ\	-\ −

@�

*\
	φ@	-6Â −

^√^&

*\&
φ]	-Â6 −	

@�

*\
	φD	Â\ −

																				^√^&
*\&

	φ^	-@ −
@�

*\
	φv	-\Â +

^√^&

*\&
	φ�	-6Â6 −

@�

*\
	φ*&	-	Â\ −

^√^&

*\&
	φ**	Â@,   

 
where 

φ* =
−1820
2033 	 
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φ6 =
−1274
2033 	{ 

φ\ =
−25480

6327759259	
(2401	{ + 15065) 

φ@ =
−2548

6327759259	
(62426	{6 + 368513	{ − 104805) 

φ] =
178360

6327759259		
(16562	{6 − 7337	{ + 420) 

φD =
−17836

6327759259		
(35 + 1188	{)(26	{ − 7) 

φ^ =
−356720

19695296232100457
(2401	{ + 15065)6(169	{ − 42) 

φv =
9274720

19695296232100457	
(2401	{ + 15065)(49	{ − 5)(169	{ − 42) 

φ� =
4994080

19695296232100457	
(169	{ − 42)	(4881233	{6 + 17567205	{ + 548400) 

φ*& =
64923040

19695296232100457	
(35 + 1188	{)(49	{ − 5)(169	{ − 42) 

φ** =
−17479280

19695296232100457		
(35 + 1188	{)6(169	{ − 42) 

 
In [4], a nonlinear coordinate transformation is presented to transform every system with the following 
system  

 

⎝

⎜
⎛

-
	
	
	
Â̇

̇

	⎠

⎟
⎞
=

⎝

⎜
⎛

	
−U	Â
	
	

	U	-
	 ⎠

⎟
⎞
+

⎝

⎜
⎛

B(|-|, |Â|)
	
	
	

B(|-|, |Â|)⎠

⎟
⎞

                                                        (19) 

 
Into the system: 

⎝

⎜
⎛

‰
	
	
	
‚̇

̇

	⎠

⎟
⎞
=

⎝

⎜
⎛

	
−U	‚
	
	

U	‰
	 ⎠

⎟
⎞
+

⎝

⎜
⎛

(.‰ − D‚)(‰6 + ‚6) + B(4)
	
	
	

(.‰ + D‚)(‰6 + ‚6) + B(4)⎠

⎟
⎞

                                        (20) 

 
This is expressed in polar coordinates as: 

⎝

⎜
⎛

C
	
	
	
l̇

̇

	⎠

⎟
⎞
=

⎝

⎜
⎛

	
.	C\
	
	

U + D	C6
	 ⎠

⎟
⎞

                                                                           (21) 

At the Hopf bifurcation point, the sign of "." determining the stability of the equilibrium point, where 
 

. =
1
16 8O""" + O"aa + ›""a + ›aaa +

1
U
`O"a`O"" + Oaaa − ›"a`›"" + ›aaa − O""	›"" + Oaa	›aaaf 				(22) 

 

 O"a	denotes 
Ç)É(&,&)

Ç"Ça
	,etc. and  O, › are the functions containing the nonlinear terms of equation (19). Applying 

equation (22) to expression (18) which has structure of (19)	to obtain: 
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													. =
1

3112523
(436982	{6 − 139944	{ − 43855)							 

 
Fig. 5 describes the values of . and the following is obtained. 

• When { > *

*6^@
`204 + 	√204506a		or		{ < *

*6^@
(204 − 	√204506) , then . is positive i.e. the 

bifurcated limit cycle is unstable and the type of Hopf bifurcation is Subcritical Hopf bifurcation.  
•  When  { ∈ ( *

*6^@
(204 − 	√204506)	, *

*6^@
(204 + 	√204506)), then . is negative i.e.  the 

bifurcated limit cycle is stable and the type of Hopf bifurcation is supercritical Hopf 
bifurcation.																																																																																																																																																												∎       
                                                                                                                

 
 

FIGURE 5:  The plot of value 	. = *

\**6]6\
(436982	{6 − 139944	{ − 43855)	and the roots of . is { =
*&6

D\^
± √6&@]&D

*6^@
. 

4. MULTIPLE OF HOPF BIFURCATION: 
The bifurcation of several limit cycles from a focus is related with the stability of the focus. Andronov have 
assigned a set of numbers  Y6, Y@, YD, …	 which they call focal values. The stability of the focus is determined 
by the sign of the first nonvanishing focal value. Furthermore, the number of limit cycles which may bifurcated 
from the focus is obtained by the number of vanishing Y+	(N = 2,4,6, … ) simultaneously [8]. For more 
information about this topic, the reader can refer to [17],[18], [19] and [20]. 
 
Theorem 2. When  { = *

*6^@
(204± 	√204506), then at most two limit cycles can be bifurcated from the 

origin. 
Proof:  At first, system (11)	transforms into the Canonical form by the following linear transformation. 

 

⎝

⎜
⎛

*
	
}
	
X	⎠

⎟
⎞
= ' 	 	

⎝

⎜
⎛

‰
	
‚
	
á	 ⎠

⎟
⎞
, áℎêCê			' =

⎝

⎜
⎜
⎜
⎛
−
√70
7 1

13
20

0
17
7 1

−
√70
10 −1

169
140

	

⎠

⎟
⎟
⎟
⎞

 

 
After some calculations, the following system is obtained. 
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⎝

⎜
⎜
⎜
⎜
⎛

%
	
	

̇

	
(
	
	

̇

	
)̇	 ⎠

⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛
−√7010 	(

	
√70
10 	%	
	

− 137 	)	
	 ⎠

⎟
⎟
⎟
⎞

+

⎝

⎜
⎜
⎜
⎛

567
	√70	

ϑ!	%# + 567	√70		ϑ#	(# − 13689	√70	ϑ$	)# − 39690	ϑ%	%( + 13689	ϑ&	%) + 567
	√70	

	ϑ'	()					
	

−140	ϑ!	%# − 9800	ϑ#	(# + 236600	ϑ$	)# + 140	√70	ϑ%	%( − 338	√70	ϑ&	%) − 140	ϑ'	()			
	

340	ϑ!	%# + 23800	ϑ#	(# − ϑ$	)# − 340	√70		ϑ%	%( +
57460	√70	

7 ϑ&	%) + 340	ϑ'	()	 ⎠

⎟
⎟
⎟
⎞
(23) 

 
where 

ϑ* =
1

34561		
(30 + 49	{) 

ϑ6 =
1

34561	
(2 + 	{) 

ϑ\ =
1

96770800	
(42 − 169	{) 

ϑ@ =
1

34561	
(23 − 14	{) 

ϑ] =
1

691220	
(3 − 14	{) 

ϑD =
567

34561√70	
	(52 − 169	{) 

 
We introduce the following Lyapunov function 

v(‰, ‚, á) = ‰6 + ‚6 +'''M+,4)+,%)4

4

+,&

	‰+	‚4)+
%

4,&

	á%)4	
!

%,\

																																									(24) 

satisfying the following equation 
Z(v) = Y6	C6 +	Y@	C@ + YD	CD +⋯+ Y6+	C6+																																																(25)         

                             
where	C6 = ‰6 + ‚6 and Z is the vector field of system	(23). By solving equation (25) and using computer 
algebra MAPLE, we obtain: 
Y6 = 0, 
 Y@ =

*

D66]&@D
(1061242		{6 − 339864	{	 − 106505) , 

YD =
1

1726726011260711266104 (	78631416434808830320	{
@ − 748798730772543047506	{\ 

									−	996010931434584656948	{6 + 	427191472668511581765	{		 
									+113442500988872872250). 
Since Y@ = 0		if and only if		{ = *

*6^@
`204± 	√204506a. Therefore at { = *

*6^@
`204± 	√204506a , 	Y@ =

0, but		YD =
*

6*^6v*]vv�^v&�
(−185734059215± 356475635√204506) non equal zero. 

Since Y6 = Y@ = 0 when { = *

*6^@
`204± 	√204506a, then at most two limit cycles can be bifurcated from 

the origin.                                  
                                                                                                                                           ∎  

5. CONCLUSIONS: 

In this paper, system (11) has been investigated. The local stability and the existence of the Hopf 
bifurcation are studied, in addition to the direction and stability of the bifurcating periodic solutions. It was 
shown that the origin of system (11) is asymptotically stable and unstable when E < )*\

^
 and E > )*\

^
 , 

respectively. it was proved that the bifurcated limit cycle at the bifurcation value, E = )*\

^
, is unstable and the 

type of Hopf bifurcation is subcritical Hopf bifurcation when { > *

*6^@
`204 + 	√204506a		or		{ <
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*

*6^@
(204 − 	√204506) and it is stable and the type of Hopf bifurcation is supercritical Hopf bifurcation when 

{ ∈ ( *

*6^@
(204 − 	√204506)	, *

*6^@
(204 + 	√204506)). Furthermore, it was also verified that at most two 

limit cycles can be bifurcated from the origin when  { = *

*6^@
`204± 	√204506a.  
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