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ABSTRACT:

The main aim of this paper is to introduce the relationship between the topic of coding theory and the projective space in
field three and test the code. The maximum value of size of code over finite field of order three and an incidence matrix with the
parameters, n (length of code), d (minimum distance of code) and e (error-correcting of code) have been constructed. With a theorem
and a result that test the code if it is perfect or not.
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1. INTRODUCTION:

In 2018 Al-Saraji and Al-Hamidi [5],[6], applied the coding theory to the projective plane of field 3.,
so I did this expanding the work of Al-Saraji, where the coding theory was applied to field 3 in projective
space, and there were several differences. In order to expand the work further and as a new work.

2. Coding Theory in The PG (3,3):
Theorem 1.1: [3],[4]
Every line in PG (3,3) contains exactly q+1 points.
Theorem 1.2:[9]
Every plane in PG (3,3) contains exactly q?+ q+1 point (line).
Theorem 1.3: [10]
There exist q3+q2+ q+1 points in PG(3,3).
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Theorem 1.5:[6]

(n, M, d)-code C satisfies

M {(3) +(D) @D+ +(3) (-De< g

Corollary 1.6:[6]

(n, M ,d)-code C is perfect if and only if M {() +(3) (@-D+...+(%) (@ — 1)®}=q"

Now let’s talk about the fields of order three of the projective space of the three -dimensions. And let us
have the following points generated from a generated matrix:{T;=[1,0,0,0],T,=[0,1,0,0],
T;=[1,1,0,0],T,=[2,1,0,0], Ts=[0,1,1,0], ps=[1,1,1,0], T,=[2,1,1,0], Tg=[0,2,1,0],Te=[0,0,1,0], T;,=[1,0,1,0],
T;1=[2,0,1,0], T;2=[1,2,1,0], T13=[2,2,1,0], T;,=[0,0,0,1], T;5=[1,0,0,1], T;6=[2,0,0,1], T;,=[0,1,0,1],
Tig=[1,1,0,1], T19=[2,1,0,1], T,,=[0,2,0,1], T,1=[1,2,0,1], p22=[2,2,0,1], T,53=[0,0,1,1],T,4=[1,0,1,1],
T,5=[2,0,1,1], T,6=[0,1,1,1], To,=[1,1,1,1], Tog=[2,1,1,1], T,4=[0,2,1,1], T3o=[1,2,1,1], T3,=[2,2,1,1],
T3,=[0,0,2,1], T33=[1,0,2,1], T34=[2,0,2,1], T35=[0,1,2,1], T36=[1,1,2,1],T3,=[2,1,2,1],
T35=[0,2,2,1],T39=[1,2,2,1], T49=[2,2,2,1] }

Table of planes for field 3:

LS L) 3 Tty . < Tt37 | t3g | M39 T40
2 1 4 3 A 3 1 3 4
5 9 7 6 A 5 8 7 6
8 10 9 9 A 11 12 8 8
9 11 12 13 A 12 13 10 11
14 14 14 14 A 15 17 16 15
17 15 19 18 A 19 18 17 17
20 16 21 22 o o] 20 19 21 22
23 23 23 23 o o] 23 23 23 23
26 24 28 27 o] 27 24 27 28
29 25 30 31 A 31 25 31 30
32 32 32 32 A 34 38 33 34
35 33 37 36 A 35 39 37 36
38 34 39 40 A 39 40 38 38
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It is obvious that space contains a table of lines and plans and a table of planes now we will create a
table for the planes and planes that will be obtained according to the following

equation: Xq Y1+ X, Yo+ X3 Y3+ X4 ¥4 =0, when Ti=[ X4,X5,X3,X4] and Tj=[ ¥1,¥2,Y3,Y4]

2 5 8 9 14 17 20 23 26 29 32 35 38
5 14 14 14 2 5 5 2 8 9 2 9 8
1 8 26 29 23 17 29 23 26 20 20 35 17 17
9 38 35 32 20 32 35 29 32 38 38 26 23
1 9 10 11 14 15 16 23 24 25 32 33 34
9 14 14 14 1 9 9 1 16 10 1 10 11
? 10 23 24 25 15 24 25 24 11 15 33 16 15
11 32 34 33 16 33 34 25 32 32 34 23 23
4 6 8 11 15 17 22 23 28 30 34 36 38
6 15 17 17 4 6 6 4 8 11 11 8 4
0 8 28 23 28 17 30 23 28 22 22 15 15 34
11 38 38 36 22 34 36 30 34 38 23 30 36

Theorem 1.7

The projective space of in field three is a code with a parameters [n = 40,d=13,e =6, M=33°]
proof: The space m3has an incidence matrix A=(a;;),where

a; = 1if Tj € m; And also condition a;; =0 if Tj & ;

After applying the theorem we will have a table of the planes on which the point lie and which do not
and in field 3we have 0,1,2 where z=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0...,0,0,0,0,0] and
u=[1,1,1,1,1,1...,1,1,1,1,1,1,1,1,1] and w =[2,2,2,2,2.2.2.2.2.2...,2,2.2,2.2.2.2] and then we have the table m
from the law m;=u+/; and table V from v;=w+[; and then find these values d(z, m;)and
d(u,m;),d(w,m;),d(m;,m5),d(m,m;),d (7, v;),d(z,m;),d(u,m;),d(w,m;),d(m;,m;),d(m;,vy),d(z,v;),d(u,v;),d(w,v;)

,d(v;,vj) and i # j in the following tables of the planes .
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Ty Tz T3 Ty Ts7 Tsg Ts9 Ts0
T4 0 1 0 0 0 1 0 0
T, 1 0 0 0 0 0 0 0
T3 0 0 0 1 1 0 1 0
T, 0 0 1 0 0 0 0 1
T3y 0 0 1 0 0 0 1 0
Tl3g 1 0 0 0 0 1 1 1
T3 0 0 1 0 1 1 0 0
40 0 0 0 1 0 1 0 0
Now the table of m;
my 1 1 1
m, 2 1 1
m; 1 2 1
my 1 1 2
ms- 1 1 1
m3g 2 1 2
m3g 1 1 1
my 1 2 1
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The table of v;
\%] 2 0 2 2 . . . 2 0 2 2
v, 0 2 2 2 2 2 2 2
V3 2 2 2 0 0 2 0 2
Vy 2 2 0 2 2 2 2 0
V37 2 2 0 2 2 2 0 2
V3g 0 2 2 2 2 0 0 0
V39 2 2 0 2 . . . 0 0 2 2
V0 2 2 2 0 . . . 2 0 2 2

these values d(z, ;)=13 and d(u,7;)=27,d(w,m;)=40,d(7;,;) =18,d(m;, ;) =40
d(m;,v;)=40,d(z,m;)=40,d(u,m;)=13,d(w,m;)=27,d(m;,m;)=18,d(m;,v;)=40,d(z,v;)=27,d(u,v;)=40,d(w,v;)=1
3,d(v;,vj) =18.If we substitute the values of n = 40,d= 13,e =6,Hence C is a(40,3%®,13)-code .And applying
the theorem 2.2.3 we gets that :

33T @ +(5) @+(%) ®+()16+()32)+()(64)}

= 335(1 +80+3120+79040+1462240+21056256+245656320)

= 335(1 +80+3120+79040+1462240+21056256+245656320)

#q", n =40 By corollary 1.6 therefore C is not perfect

3. CONCLUSIONS

The application of the coding theory to certain fields in space and plane, we summarize them in the

following table:
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