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A B S T R A C T: 
In this paper Standard Error of Mean (SEM), as a new technique, is used for transforming multi-objective linear 

programming problems (MOLPPs) to the single objective linear programming problems (SOLPPs). To this end, an algorithm has 
been proposed and suggested to solve MOLPPs, which have been tested through numerical examples by employing Excel Solver. 
However, the study compares the results of other techniques like (Chandra Sen, Optimal Average of Minimax and Maximin, New 
Arithmetic Average, New Geometric Average, New Harmonic Average, and Advanced Transformation) with the results of this new 
technique SEM. The numerical results indicate that a new technique in general is promising. 
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1. INTRODUCTION: 
	
     A single objective function has frequently been optimized (maximized or minimized) using linear 
programming under certain restrictions. It can be challenging to maximize two or more objectives at once, 
and this challenge increases if the objectives are incompatible. It was decided to investigate the potential 
of coming up with a compromise solution that meets all the objectives. Many techniques have been utilized 
for the purpose of resolving multi-objective optimization problems. In 1983, [1] was the first to introduce 
the problem of multi-objective linear programming. Following that, several alternative statistical methods 
were developed that are now followed by numerous intellectuals and specialists. 
     Many strategies have been presented, particularly in the last four decades. For example, [2] proposed 
an approach for solving multi-objective fractional programming problems. The algorithm's computer 
application was tested on a variety of numerical problems, and the technique was improved by employing 
mean and median values for objective function values [3]. 
  To tackle the challenges of the multi-objective programming, the Chandra Sen method has been 
enhanced since then. [4] proposed a new approach based on the optimum average technique that was a 
development of the Chandra Sen [1] and [3] techniques. Moreover, regarding mean and median, [5] offered 
the harmonic average (mean) technique to turn MOLPPs into single-objective linear programming 
problems.  
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[6] also proposed a novel strategy for solving multi-objective linear fractional programming issues utilizing 
a novel geometric averaging method that outperformed other methods. The newly suggested harmonic 
averaging approach outperforms all other averaging methods in terms of performance. [7] developed an 
enhanced transformational strategy for solving MOPP, claiming that the strategy was very simple to 
compute. 
     To expand on the previous work, the current research is an attempt to solve the MOLPP as a single 
linear programming problem using an unproven approach called standard error of mean. Because of its 
more reasonable and efficient implementations, multi-objective programming has gained popularity among 
many scholars. The present work describes a MOLPP and proposes a standard error of mean approach to 
optimize the objective function, where a single objective function is formed from multi-objective functions. 
The outcome is compared to that of optimization utilizing average and the most current methodologies by 
implementing Excel solver. The new approach used in the present work and its results outperforms the 
outcomes of all the other aforementioned techniques. 

 

2. DEFINITIONS: 

MULTI-OBJECTIVE LINEAR PROGRAMMING PROBLEMS 
The mathematical form of MOLPP is given as follows: 
).*	ç* = M*L*	
).*	ç6 = M6L* 
⋮	
)N/	ç#(* = M#(*L * 
⋮                                                                                                                                                                                     
(1) 
)N/	ç3 = M3L*                  
s/t :-                                                                                                                           
AX (≥, =, or ≤) b                                                                                                                                                                                                                                                                          
X≥0 
where, D is [-dimensional vector of constants, * is / dimensional vector of decision variables and d is 
[ × / matrix of constants. 
 

3. ARITHMETIC AVERAGE [8]: 
Arithmetic average (AA) which is sometimes referred to as mean, is the most commonly used central value 
of a distribution. The AA is calculated by the sum of the values of all the observations }*, }6, … , }! and 
this total is divided by the number of observations: AA = 

Y'(Y)(⋯(Y(
!

 , where n is the total number of 

observations. 
 

4. GEOMETRIC AVERAGE [9]: 
The geometric average (GA) of n positive observation values }*, }6, … , }!  is defined as the nth positive root 
of the product of the values: GA = ^}*}6…}!(  , where n is the total number of observations. 
 

5. HARMONIC AVERAGE [9]: 
The harmonic average (HA) is another type of averages of observation values }*, }6, … , }!: HA= 

!
'
,'
( '
,)
(⋯( '

,(

, 

where n is the total number of observations.  
 



Proceeding of 3rd International Conference of Mathematics and its Applications 
TICMA2022 
https://conferences.su.edu.krd/su/ticma2022/ 
DOI: https://doi.org/10.31972/ticma2022 

                                                                                                                                                               
 

127 

6. STANDARD ERROR OF MEAN [10]:	
The standard error of mean (SEM) of n positive observation values }*, }6, … , }! is defined mathematically as 

the standard deviation (SD) of }*, }6, … , }! that is divided by the square root of n; ]L) = X/

√!
, where standard 

deviation SD =7
∑ (Y8)ññ))
(
8H'

!)*
 , and AA is the arithmetic average of }*, }6, … , }!. 

7. APPLIED TECHNIQUES OF CONVERTING MULTI-OBJECTIVE OPTIMIZATION 
PROBLEMS INTO SINGLE OPTIMIZATION PROBLEM: 

Various strategies are presented in the literature to resolve the MOLPP. Initially, Chandra Sen's approach was 
employed to solve multi-objective optimization problems, yielding a somewhat poor outcome for the objective 
function. Then, to solve it, additional known and recommended strategies are applied. These strategies are 
concisely detailed below. 
 

8. CHANDRA SEN’S (CS) TECHNIQUE [1]: 
Using simplex method to solve MOLPP in equation (1), a single value corresponding to each of the 
objective functions is obtained which are in equation (2). 
).*	ç* = Л*  
).*	ç6 = Л6 
 ⋮                                                                                                                                                                                    
(2) 
).*	ç# = Л#  
)N/	ç#(* = Л#(*  
⋮ 
)N/	ç3 = Л3 
Where Л*, Л6,…, Л3 are values of the objective functions. These values are utilized in Chandra Sen’s 
technique to obtain a single objective function as shown in equation (3). 

Max ç = ∑ á8

|Л8|
#
+,*  +∑ á8

|Л8|
3
+,#(* ,                                                                                                                                      (3) 

where Л+ ≠0, N=1, …,, subject to the constraints of equation (1), and the optimum value of the objective 
functions Л+ may be positive or negative. 
 

9. OPTIMAL AVERAGE OF MINIMAX AND MAXIMIN (OAXN)TECHNIQUE [11]: 
[* =min { |Л+| }, N = 1, 2, …, C.  
[6 =max { |Л+| }, N = C + 1, …, ,.  
OAXN = 

''(')

6
 . The MOLPP becomes Max ç = 

∑ òQZ	á8
%
8H' )∑ ò+!	á8

I
8H%;'

ôöiq
. 

 
10. NEW ARITHMETIC AVERAGE (NAA) TECHNIQUE [12]: 

[* =min { |Л+| }, N = 1, …, C.  
[6 =min { |Л+| }, N = C + 1, …, ,.  
NAA = 

''(')

6
 . The MOLPP becomes Max ç = 

∑ òQZ	á8
%
8H' )∑ ò+!	á8

I
8H%;'

õññ
. 

 
11. NEW GEOMETRIC AVERAGE (NGA) TECHNIQUE [12]: 

[* =min { |Л+| }, N = 1, …, C.  
[6 =min { |Л+| }, N = C + 1, …, ,.   
NGA= √[*[6. The MOLPP becomes Max ç = 

∑ òQZ	á8
%
8H' )∑ ò+!	á8

I
8H%;'

õúñ
. 

 
12. NEW HARMONIC AVERAGE (NHA) TECHNIQUE [7]: 

[* =min { |Л+| }, N = 1, …, C.  
[6 =min { |Л+| }, N = C + 1, …, ,.  
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NHA=
6

'
:'

( '
:)

. The MOLPP becomes Max ç = 
∑ òQZ	á8
%
8H' )∑ ò+!	á8

I
8H%;'

qùö
. 

 
13. ADVANCED TRANSFORMATION (AT) TECHNIQUE [7]: 

[* =min { |Л+| }, N = 1, …, C.  
[6 =min { |Л+| }, N = C + 1, …, ,.  
[= min { [*, [6 }. The MOLPP becomes Max ç = 

∑ òQZ	á8
%
8H' )∑ ò+!	á8

I
8H%;'

'
.  

14. NEW TRANSFORMATION TECHNIQUE: STANDARD ERROR OF MEAN (SEM) 
TECHNIQUE: 

  The standard error of mean technique is a proposed technique which is used to come up with a single 

optimization problem from multi-objective optimization problems. It is denoted by L) = X/

√3
 , ]H is the 

standard deviation of |Л+| , ∀ N = 1,⋯ , ,; SD=7
∑ (|Л8|)ññ))
I
8H'

3)*
 , and AA is the arithmetic average of |Л+| , ∀ 

N = 1,⋯ , ,. 

The MOLPP becomes Max ç = 
∑ òQZ	á8
%
8H' )∑ ò+!	á8

I
8H%;'

Xûò
 , subject to the same constraints.  

3. ALGORITHM: 

The following algorithm is followed to obtain the optimal solution for the MOLP problems defined 
previously via using SEM technique can be summarized through the following steps: 

1. Find the value of optimal solution of all the objectives individually by simplex method via Excel 
solver, which is to be maximized or minimized. 

2. Calculate the SEM of the optimal values; |Л+|, N = 1, …, ,. 
3. Construct the combined objective function by subtracting weighted minimization objective function 

from weighted maximization objective function; ∑ ).*	ç+
#
+,* −∑ )N/	ç+

3
+,#(* . 

4. Divide the result of step (3) by SEM;  ∑ òQZ	á8
%
8H' )∑ ò+!	á8

I
8H%;'

Xûò
. 

5. Solve the result (4) by simplex method via employing Excel solver, then the solution of the problem 
is obtained.  

4. NUMERICAL EXAMPLES: 
Consider the following multi-objective linear programming problems. The following two examples are solved 
for the analysis purposes of the present study; the results of the two examples are also compared for the 
purposes of making a distinction between CS, OAXN, NAA, NGA, NHA and AT techniques and SEM as a 
more effective technique. 

EXAMPLE 1 
Max ç*=3** + 2*6 
Max ç6=4** + *6       

Max ç\=4** − 2*6 
Max ç@=15** + 4*6 
Min ç]=−6** + 2*6 
Min çD=−9** + 3*6 
Min ç^=−5** + 2*6 

s/to: - 
** + *6 ≤ 4 
** − *6 ≤ 2 
**, *6 ≥ 0 
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SOLUTION: 
After finding the value of each of the individual objective functions by simplex method employing Excel 
solver; the results are as below in Table 1: 

TABLE 1: Results of Example 1 
i ôü (ö*,ö6) |ôü| 

1 11 (3,1) 11 
2 13 (3,1) 13 
3 10 (3,1) 10 
4 49 (3,1) 49 
5 -16 (3,1) 16 
6 -24 (3,1) 24 
7 -13 (3,1) 13 

EXAMPLE 2 

Max ç*=0.5** + 0.66*6 + 0.833*\ 
Max ç6=0.25** + 0.33*6 + 0.415*\ 

Min ç\=0.2** − 0.34*6 − 0.3*\ 
Min ç@=0.3** − 0.32*6 − 0.32*\ 

s/to: - 
3** + 4*6 + 2*\ ≤ 60 
2** + *6 + 2*\ ≤ 40 
** + 3*6 + 2*\ ≤ 80 

**, *6, *6 ≥ 0 
 

SOLUTION: 

After finding the value of each of the individual objective functions by simplex method employing Excel 
solver, the results are as below in Table 2: 

TABLE 2: Results of Example 2 
i ôü (ö*,ö6,ö\) |ôü| 

1 18.283 (0,6.667,16.667) 18.283 

2 9.12 (0,6.667,16.667) 9.12 

3 -7.27 (0,6.667,16.667) 7.27 
4 -7.47 (0,6.667,16.667) 7.47 

5. RESULTS AND DISCUSSION: 
Table 3 summarizes the solutions of the MOLPP using techniques. It shows that the solution of the objective 
functions is improved when used the proposed new transformation technique SEM is used.  
 

TABLE 3. Comparison between the results of techniques 

Techniqu
es 

Example1 Example2 

ô 
(**, *6

) 
Time 

N. 
Iteratio

ns 
ô (**, *6,*\	) 

Tim
e 

N. 
Iteration

s 
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CS 7 (3,1) 0.062 2 
3.99

9 
(0, 6.667, 
16.667) 

0.06
3 

2 

OAXN 8 (3,1) 0.063 2 
5.07

7 
(0, 6.667, 
16.667) 

0.06
3 

2 

NAA 
11.82

6 
(3,1) 0.062 2 

5.14
1 

(0, 6.667, 
16.667) 

0.07
8 

2 

NGA 
11.92

8 
(3,1) 0.047 2 

5.17
4 

(0, 6.667, 
16.667) 

0.07
8 

2 

NHA 
12.03

1 
(3,1) 0.078 2 

5.20
8 

(0, 6.667, 
16.667) 

0.06
3 

2 

AT 13.6 (3,1) 0.078 2 
5.79

6 
(0, 6.667, 
16.667) 

0.06
2 

2 

SEM 23.7 (3,1) 0.047 2 16.1
14 

(0, 6.667, 
16.667) 

0.07
8 2 

 
     It can be seen that in Example 1, the values of **, *6 and the number of iterations do not change in all the 
techniques; however, the value of objective functions is improved and increased in the techniques 
successively. As Table 3 shows, the difference in the value of ç is significantly higher using the SEM 
technique compared to all the previously used techniques. This indicates that the SEM technique is more 
effective than such techniques as CS, OAXN, NAA, NGA, NHA and AT. There is time difference in solving 
each problem using each technique as presented in the table. The CS and OAXN techniques needed 0.062 
seconds only for the solution of the problem. However, for the transformation of the Example 1, the maximum 
time required is 0.078 seconds for the NHA and AT techniques; their results are better than OAXN, NAA, 
NGA and SEM. Interestingly, although the value of ç differs in NGA and SEM techniques, with 11.928 and 
23.7, respectively- the required time for solving is the same in the first example. Thus, the highest value of ç 
does not take the least time.  
     In Example 2, the less consuming time technique goes for the AT, whereas the most consuming time is 
needed for NAA, NGA and SEM but with the optimize value 5.141, 5.174 and 16.114, respectively. This 
reveals that in Excel solver, the required time changes depending on the technique being used and ensures that 
two different techniques with big differences of optimal values may take the same time. Just like Example 1, 
in Example 2 also the results of **, 	*6, *\	 and the number of iterations remain the same in all the techniques 
used in the present study. The result of SEM in Example 2 proves to be better than all the other techniques, 
namely, CS, OAXN, NAA, NGA, NHA and AT. 
 

6. CONCLUSION	AND	FUTURE	WORK:	
     Different techniques such as CS, OAXN, NAA, NGA, NHA and AT are used to solve MOLPP, and the 
results are compared in Table 3. As a new transformation technique, SEM is used to transform MOLPP into 
single linear programming problem. As the obtained results reveal, for transforming MOLPP, SEM is better 
suited for optimizing MOLPP compared to such techniques as CS, OAXN, NAA, NGA, NHA and AT.  
     The results show the importance of the proposed SEM as a new transformation technique for the optimizing 
MOLPP using standard error of mean for the very first time. In Example 1, the consumed time for NGA and 
SEM is the same although value of ç is remarkably different with 11.928 and 23.7, respectively. Similarly, 
for solving Example 2, NAA, NGA and SEM takes the same time with 0.078 seconds only despite the great 
difference in their ç value with 5.141, 5.174 and 16.114, respectively. This reveals that whether the value of 
ç is greater or not, the required time to solve the MOLPPs remains the same. It cannot be generalized that 
the greater the value of ç is, the more or less time it will require to solve.    
     The future studies should compare SEM with techniques other than CS, OAXN, NAA, NGA, NHA and 
AT to reinforce the results and come up with better results.  
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