Third International Conference of Mathematics and its Applications

(TIGMA 2022)

RESEARCH PAPER

ω_{p}-Open and ω_{p}-Closed Functions

Halgwrd Mohammed Darwesh ${ }^{1, a}$ And Shagull Hossein Mahmood ${ }^{2, \text { b,* }}$
1,2 Department of Mathematics, College of Science, University of Sulaimani, 46001 Sulaimani, Kurdistan Region, Iraq
${ }^{a} h a l g w r d . d a r w e s h @ u n i v s u l . e d u . i q$
${ }^{{ }^{b} \text { shagull.mahmmod@univsul.edu.iq }}$

Abstract

In this work, we study and define two new concepts of functions named ω_{p}-open and ω_{p}-closed functions by using the concepts of $\omega_{p}-$ open and ω_{p}-closed sets. The concept of ω_{p}-open function strictly located between both the concepts of open and preopen functions. We obtain a few properties of these functions, however, the connections between them are examined.

KEYWORDS: ω_{p}-closed set, ω_{p}-open set, ω_{p}-continuous function, ω_{p}-closed function, ω_{p}-open function.
DOI: https://doi.org/10.31972/ticma22.12

1. INTRODUCTION:

In 1963, Levine [2] defined a new class of open sets called semi-open sets, also he introduced a new class of functions named semi-continuous and semi-open functions in the space of topology. Mashhour et al. [3] presented pre-continuous, weak pre-continuous and pre-open functions. The concepts of α-continuous and α-open functions are investigated and defined by Mashhour et al. [4].

Abd El-Monsef et el. [5] represented a new class of sets called β-open sets, and they described β continuous and β-open functions. The notion of the γ-open function is investigated by El-Atik [6]. However, Raychaudhuri and Mukherjee [7] defined δ-preopen sets, also they present δ-almost continuous and δ-preopen functions.

The purpose of the paper is, we apply the notions of ω_{p}-open and ω_{p}-closed set to describe the new types of functions denoted by $\omega_{p}-$ open and ω_{p}-closed functions. In addition, the basic properties and the relation between these functions are presented.

2. PRELIMINARIES

All through the present paper (X, τ) and (Y, \mathfrak{J}) express the spaces of topology on which no separation axioms are considered otherwise is clarified, also Fun means function. If $\mathcal{D} \subseteq X$, then the interior (resp. $\omega-$ interior, $\delta-$ interior, ω_{p} - interior) of \mathcal{D} is the union of all open (resp. $\omega-$ open, $\delta-$ open, $\omega p-$ open) sets in X contained in \mathcal{D} represented by $\operatorname{Int}(\mathcal{D})\left(\right.$ resp. $\omega \operatorname{Int}(\mathcal{D}), \operatorname{Int} t_{\delta}(\mathcal{D}), \omega_{p} \operatorname{Int}(D)$. The closure (resp. ω-closure, δ - closure, ω_{p} - closure) of \mathcal{D} is the intersection of all closed (resp. ω - closed, δ-closed, ω_{p}-closed) sets of X containing \mathcal{D}. A subset \mathcal{D} in X is called semi-open [2] (resp. regular - open [8], preopen [3], α-open [9], β - open, [5], γ - open [6], δ-preopen [7], $\omega_{p}-$ open [1]) if $\mathcal{D} \subseteq \operatorname{Cl}(\operatorname{Int}(\mathcal{D})) \quad($ resp. $\quad \mathcal{D}=\operatorname{Int}(\operatorname{Cl}(\mathcal{D})), \quad \mathcal{D} \subseteq \operatorname{Int}(\operatorname{Cl}(\mathcal{D})), \quad \mathcal{D} \subseteq \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(\mathcal{D}))), \quad \mathcal{D} \subseteq$ $\left.\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(\mathcal{D}))), \mathcal{D} \subseteq \operatorname{Int}(\operatorname{Cl}(\mathcal{D})) \cup \operatorname{Cl}(\operatorname{Int}(\mathcal{D})), G \subseteq \operatorname{Int}\left(C l_{\delta}(\mathcal{D})\right), \mathcal{D} \subseteq \operatorname{Int}(\omega \operatorname{Cl}(\mathcal{D}))\right)$.

[^0]Also, a subset \mathcal{D} of X is called δ - open [10] if \mathcal{D} is the union of all regular - open subset of X, and a subset \mathcal{D} is called ω-open [11] if for each $x \in A$, there exits an open set \mathcal{U} in X containing x such that $\mathcal{U}-D$ is countable. The family of all semi - open (resp. regular - open, preopen, $\alpha-$ open, $\beta-$ open, $\gamma-$ open, δ-open, δ - open, ω - open, ω_{p}-open) subsets of X represented by $S O(X)$ (resp. $R O(X)$, $\left.P O(X), \alpha-O(X), \beta-O(X), \gamma-O(X), \delta-O(X), \delta-P O(X), \omega O(X), \omega_{p} O(X)\right)$. The complement of semi open (resp. regular - open, preopen, α-open, β-open, $\gamma-$ open, $\delta-$ preopen, ω-open, ω_{p}-open) set is called semi - closed (resp. regular - closed, preclosed, α - closed, β - closed, γ - closed, δ preclosed, ω - closed ω_{p} - closed), also their family is represented by $\operatorname{SC}(X)$ (resp. $R C(X), P C(X), \alpha-$ $\left.C(X), \beta-C(X), \gamma-C(X), \delta-C(X), \delta-P C(X), \omega C(X), \omega_{p} C(X)\right)$.

Definition 2.1. Let $\mathfrak{h}: X \rightarrow Y$ be a Fun. If $\mathfrak{b}(\mathcal{D})$ is open (resp. semi - open, preopen, $\alpha-$ open, β - open, δ - preopen, $\gamma-$ open) in Y, each open subset \mathcal{D} of X, thus, \mathfrak{h} is called open (resp. semi - open [12], preopen [3], α - open [4], β - open [5], γ - open [6], δ - preopen [7]) Fun.
 \mathfrak{h} is called continuous [13] (ω_{p} - continuous [1]) Fun.

Definition 2.3. ([14]) Let (X, τ) be a space of topology. Then, a space X is said to be:

1. Locally countable, if each point $x \in X$ has a countable open neighborhood.
2. Submaximal, if every preopen set is open, equivalently if every dense subset of X is open in X.

Lemma 2.4. ([1]) For a set \mathcal{D} in space X, the followings are true:

1. Let \mathcal{D} be an open set. Then it is ω_{p}-open.
2. Let \mathcal{D} be an ω_{p}-open. Then it is pre -open, pre $-\omega-$ open and δ - preopen.

Theorem 2.5. ([16]) Let (X, τ) be a locally countable space. Then, $\tau^{\omega}=\tau_{\text {dis }}$.
Proposition 2.6. ([1]) A subset \mathcal{D} of space X is $\omega_{p}-\operatorname{open}\left(\omega_{p}-\operatorname{closed}\right) \Leftrightarrow \omega_{p} \operatorname{Int}(\mathcal{D})=\mathcal{D}\left(\omega_{p} \operatorname{Cl}(\mathcal{D})=\right.$ D).

3. MORE PROPERTIES OF $\omega_{\boldsymbol{p}}$-OPEN SETS

Theorem 3.1. Let (X, τ) be a locally countable space. Then, a set \mathcal{D} in X is ω_{p}-open \Leftrightarrow its open.
Proof: If \mathcal{D} is an ω_{p}-open subset of a locally countable space X, so $\omega \operatorname{Cl}(\mathcal{D})=\mathcal{D}$, by Theorem 2.5, so $A \subseteq \operatorname{Int}(\omega \operatorname{Cl}(\mathcal{D}))=\operatorname{Int}(\mathcal{D})$. This means that, \mathcal{D} is an open set. Conversely, let \mathcal{D} be an open set in X. Then, $\mathcal{D}=\operatorname{Int}(\mathcal{D})$, so $\mathcal{D} \subseteq \operatorname{Int}(\omega \operatorname{Cl}(\mathcal{D}))$. Hence, \mathcal{D} is an ω_{p} - open set.

Theorem 3.2. If (X, τ) is a submaximal space, then a set \mathcal{D} of X is ω_{p}-open \Leftrightarrow its preopen.
Proof: Let \mathcal{D} be an ω_{p}-open set in X. Then, by Lemma $2.4, \mathcal{D}$ is preopen. Conversely, assume \mathcal{D} is a preopen set in a submaximal space X. Then, \mathcal{D} is open. By part (1) of Lemma 2.4, \mathcal{D} is ω_{p}-open.

4. ω_{p}-Open Functions

Definition 4.1. A Fun $\mathfrak{b}: X \rightarrow Y$ is said to be ω_{p} - open, if the image of each open set in X is $\omega_{p}-$ open in Y.
Theorem 4.2. Let $\mathfrak{h}: X \rightarrow Y$ be a Fun. Then, \mathfrak{h} is an ω_{p}-open \Leftrightarrow for each $x \in X$ and each open set \mathcal{U} in X containing x, there exists an $\omega_{p}-$ open set \mathcal{V} in Y containing $\mathfrak{b}(x)$ such that $\mathcal{V} \subseteq \mathfrak{f}(\mathcal{U})$.
Proof: Suppose \mathcal{U} is an open set in X such that $x \in \mathcal{U}$. Then, $\mathfrak{b}(\mathcal{U})$ is ω_{p} - open in Y, and $\mathfrak{h}(x) \in \mathfrak{f}(\mathcal{U})$. Put $\mathcal{V}=\mathfrak{h}(\mathcal{U})$ is ω_{p} - open, $\mathfrak{h}(x) \in \mathcal{V}$ and $\mathcal{V}=\mathfrak{h}(\mathcal{U})$. Conversely, let \mathcal{U} be an open set in X. To show \mathfrak{h} is ω_{p}-open. We must show $\mathfrak{h}(\mathcal{U})$ is ω_{p}-open. If $\mathfrak{h}(\mathcal{U})=\emptyset$, then its ω_{p}-open. Otherwise, let $y \in \mathfrak{h}(\mathcal{U})$. Then, there exists $x \in \mathcal{U}$ such that $\mathfrak{h}(x)=y$. Since $x \in \mathcal{U}$, so by hypothesis, there exists an ω_{p}-open subset \mathcal{V} of X such that $\mathfrak{h}(x) \in \mathcal{V} \subseteq \mathfrak{h}(\mathcal{U})$ that is, $y \in \mathcal{V} \subseteq \mathfrak{h}(\mathcal{U})$. Therefore, $y \in \omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{U})$). This implies that, $\mathfrak{h}(\mathcal{U})=\omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{U}))$ which by Proposition 2.6, means $\mathfrak{h}(\mathcal{U})$ is an $\omega_{p}-$ open set in Y. Hence \mathfrak{h} is $\omega_{p}-$ open.

Theorem 4.3. The following conditions are equivalent for that $F u n \mathfrak{h}$ from a space X to space Y :

1. \mathfrak{h} is an ωp-open;
2. $\mathfrak{h}(\operatorname{Int}(\mathcal{D})) \subseteq \omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{D}))$, for each $\mathcal{D} \subseteq X$;
3. $\operatorname{Int}\left(\mathfrak{h}^{-1}(\mathcal{D})\right) \subseteq \mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathcal{D})\right)$, for each $\mathcal{D} \subseteq Y$;
4. $\mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Cl}(\mathcal{D})\right) \subseteq C l\left(\mathfrak{h}^{-1}(\mathcal{D})\right)$, for each $\mathcal{D} \subseteq Y$.

Proof: $(1) \Rightarrow(2)$ Let $\mathcal{D} \subseteq X$. Then, $\operatorname{Int}(\mathcal{D})$ is open in X. By (1), $\mathfrak{h}(\operatorname{Int}(\mathcal{D}))$ is ω_{p}-open in Y, implies that,

$$
\omega_{p} \operatorname{Int}(\mathfrak{h}(\operatorname{Int}(\mathcal{D})))=\mathfrak{h}(\operatorname{Int}(\mathcal{D}))
$$

Since, $\mathfrak{h}(\operatorname{Int}(\mathcal{D})) \subseteq \mathfrak{h}(\mathcal{D})$, then, $\omega_{p} \operatorname{Int}(\mathfrak{h}(\operatorname{Int}(\mathcal{D}))) \subseteq \omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{D}))$, thus by $(*), \mathfrak{h}(\operatorname{Int}(\mathcal{D})) \subseteq$ $\omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{D}))$.
(2) \Rightarrow (3) Suppose \mathcal{U} is any subset of Y. Then, $\mathfrak{h}^{-1}(\mathcal{U}) \subseteq X$, so by (2), $\mathfrak{h}\left(\operatorname{Int}\left(\mathfrak{h}^{-1}(\mathcal{U})\right)\right) \subseteq$ $\omega_{p} \operatorname{Int}\left(\mathfrak{h}\left({ }^{-1}(\mathcal{U})\right)\right) \subseteq \omega_{p} \operatorname{Int}(\mathcal{U})$. Therefore, $\operatorname{Int}\left(\mathfrak{h}^{-1}(\mathcal{U})\right) \subseteq \mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathcal{U})\right)$.
(3) \Rightarrow (4) Let $\mathcal{U} \subseteq Y$. Then, $Y-\mathcal{U} \subseteq Y$. Thus by (3), $\operatorname{Int}\left(\mathfrak{h}^{-1}(Y-\mathcal{U})\right) \subseteq \mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(Y-\mathcal{U})\right.$). So, $X-$ $C l\left(\mathfrak{h}^{-1}(\mathcal{U})\right) \subseteq X-\mathfrak{h}^{-1}\left(\omega_{p} C l(\mathcal{U})\right)$. That is, $\mathfrak{h}^{-1}\left(\omega_{p} C l(\mathcal{U})\right) \subseteq C l\left(\mathfrak{h}^{-1}(\mathcal{U})\right)$.
$(4) \Rightarrow(1)$ Let \mathcal{D} be an open subset of X. Then, by (3), $\operatorname{Int}\left(\mathfrak{h}^{-1}(\mathfrak{h}(\mathcal{D}))\right) \subseteq \mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{D}))\right)$. Since $\operatorname{Int}\left(\mathfrak{h}\left(\mathfrak{h}^{-1}(\mathcal{D})\right)\right) \subseteq \mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{D}))\right), \quad$ so $\quad \operatorname{Int}(\mathcal{D}) \subseteq \operatorname{Int}\left(\mathfrak{h}^{-1}(\mathfrak{h}(\mathcal{D}))\right), \quad$ implies that $\quad \operatorname{Int}(\mathcal{D}) \subseteq$ $\mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{D}))\right)$, but since \mathcal{D} is open, then $\mathcal{D} \subseteq \mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{D}))\right)$. Thus, $\mathfrak{h}(\mathcal{D}) \subseteq$ $\mathfrak{h}\left(\mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{D}))\right)\right) \subseteq \omega_{p} \operatorname{Int}(\mathfrak{h}(\mathcal{D}))$. Therefore, $\mathfrak{h}(\mathcal{D})$ is ω_{p}-open. Hence, \mathfrak{h} an is ω_{p} - open Fun.

Remark 4.4. The following implications show the relationship between ω_{p}-open Fun and other types of open Fun.

FIGURE 1. shows the relationship between ω_{p} - open Fun and other types of open Fun The following examples show that the converse of the implications in Figure 1 is not true in general.

Example 4.5. If $X=Y=\{1,2,3\}$, and $\tau=\mathfrak{J}=\{\varnothing, X,\{1\},\{1,2\}\}$, then the $\operatorname{Fun} \mathfrak{f}:(X, \tau) \rightarrow(Y, \rho)$ is defined by, $\mathfrak{f}(1)=1, \mathfrak{f}(2)=3$ and $\mathfrak{f}(3)=2$ is preopen, but not ω_{p}-open. Since, $P O(Y)=\{\varnothing, Y,\{1\},\{1,2\},\{1,3\}\}$ and $\omega_{p} O(Y)=\{\varnothing, Y,\{1\},\{1,2\}\}$. Thus, $\mathfrak{f}(\{1,2\})=\{1,3\}$ is not ω_{p} - open in Y.

Example 4.6. Consider $X=\mathbb{R}$ with the usual topology \mathfrak{J}_{u} and $Y=\mathbb{R}$ with the co - countable topology $\tau_{\text {coc }}$. The identity Fun $t:\left(X, \mathfrak{J}_{u}\right) \rightarrow\left(Y, \tau_{c o c}\right)$ is ω_{p}-open but not open. Since $(0,1)$ is open in $\left(\mathbb{R}, \mathfrak{J}_{u}\right)$, but $\iota((0,1))=(0,1)$ is not $\left(\mathbb{R}, \tau_{\text {coc }}\right)$, so it is not open while for any open subset \mathcal{D} of $\left(\mathbb{R}, \mathfrak{J}_{u}\right)$, there is an open interval (a, b) subset of \mathcal{D}, and $\iota(\mathcal{D})=\mathcal{D} \subseteq \mathbb{R}=\operatorname{Int}(\operatorname{Cl}((a, b)))=\operatorname{Int}(\omega \operatorname{Cl}((a, b))) \subseteq$ $\operatorname{Int}(\omega \operatorname{Cl}(\mathcal{D}))=\operatorname{Int}(\omega \operatorname{Cl}(\iota(\mathcal{D})))$ which is ω_{p} - open in $\left(\mathbb{R}, \tau_{\text {coc }}\right)$, hence its ω_{p} - open Fun.

Theorem 4.7. If $\zeta: X \rightarrow Y$ is an open Fun and $\eta: Y \rightarrow Z$ is an ω_{p} - open Fun, then $\eta \circ \zeta$ is an ω_{p}-open Fun.
Proof: Let \mathcal{V} be an open subset of X. Then, by hypothesis, $\zeta(\mathcal{V})$ is open in Y. Since η is ω_{p}-open, thus $\eta(\zeta(\mathcal{V}))$ is ω_{p} - open in Z. Therefore, $\eta \circ \zeta$ is ω_{p}-open.

Proposition 4.8. Let \mathfrak{h} be a Fun from any space (X, τ) to a locally countable space (Y, ρ). Then, \mathfrak{h} is ω_{p} - open \Leftrightarrow its open.
Proof: Let \mathfrak{b} be an ω_{p} - open Fun. Then, for each open set \mathcal{U} in X, thus $\mathfrak{h}(\mathcal{U})$ is ω_{p} - open in Y. Since, Y is locally countable, thus by Theorem 3.1, $\mathfrak{h}(\mathcal{U})$ open in Y. Therefore, \mathfrak{h} is open. Conversely, it follows from Lemma 2.4.

Proposition 4.9. Let \mathfrak{h} be a Fun from any space (X, τ) to a submaximal space (Y, ρ). Then, \mathfrak{h} is preopen \Leftrightarrow its ω_{p}-open.
Proof: It follows from Proposition 3.2.
Theorem 4.10. For the Funs $\mathfrak{g}: X \rightarrow Y$ and $\mathfrak{h}: Y \rightarrow Z$, the following conditions are true:

1. If $\mathfrak{h} \circ \mathfrak{g}$ is an open Fun and \mathfrak{h} is an injective ω_{p} - continuous Fun, then \mathfrak{g} is ω_{p}-open.
2. If $\mathfrak{h} \circ \mathfrak{g}$ is an ω_{p} - open Fun and \mathfrak{g} is an surjective continuous Fun, then \mathfrak{b} is ω_{p} - open.

Proof:

1. Let \mathcal{U} be any open subset of X. Then, by hypothesis, $\mathfrak{h}(\mathfrak{g}(\mathcal{U}))$ is open in Z. Since \mathfrak{h} is injective ω_{p}-continuous, thus, $\mathfrak{h}^{-1}(\mathfrak{h}(\mathfrak{g}(\mathcal{U})))=\mathfrak{g}(\mathcal{U})$ is ω_{p}-open in Y. Hence, \mathfrak{g} is ω_{p}-open.
2. Suppose \mathcal{U} is an open subset of Y. By hypothesis, $\mathfrak{g}^{-1}(\mathcal{U})$ is open in X. Since, $\mathfrak{h} \circ \mathfrak{g}$ is ω_{p}-open, $\mathfrak{h} \circ \mathfrak{g}\left(\mathfrak{g}^{-1}(\mathcal{U})\right)$ is ω_{p} - open in Z. Since, \mathfrak{g} is surjective, so $\mathfrak{h}(\mathcal{U})=\mathfrak{h}\left(\mathfrak{g}\left(\mathfrak{g}^{-1}(\mathcal{U})\right)\right)$. Hence, \mathfrak{h} is an ω_{p} - open Fun.

Theorem 4.11. Let $\mathfrak{h}: X \rightarrow Y$ be an ω_{p} - open Fun. If \mathcal{K} is an open subspace of X, then the restriction Fun $\mathfrak{h}_{/ \mathcal{K}}: \mathcal{K} \rightarrow Y$ is ω_{p}-open.

Proof: Let \mathcal{D} be any open subset of \mathcal{K}. Since \mathcal{K} is open in X, implies that \mathcal{D} is open in X. By hypothesis, $\mathfrak{h}(\mathcal{D})$ is ω_{p} - open in Y. But, $\mathfrak{h} / \mathcal{K}(\mathcal{D})=\mathfrak{h}(\mathcal{D})$. Therefore, $\mathfrak{h} / \mathcal{K}$ is ω_{p} - open an Fun.

5. ω_{p}-CLOSED FUNCTIONS

Definition 5.1. A Fun $\mathfrak{b}: X \rightarrow Y$ is said to be an ω_{p} - closed Fun, if the image of each closed set in X is ω_{p}-closed in Y.

Theorem 5.2. Let $\mathfrak{h}: X \rightarrow Y$ be a Fun. Then, \mathfrak{h} is ω_{p} - closed $\Leftrightarrow \omega_{p} C l(\mathfrak{h}(\mathcal{D})) \subseteq \mathfrak{h}(C l(\mathcal{D}))$, for each $\mathcal{D} \subseteq X$.
Proof: Let \mathfrak{h} be an ω_{p}-closed Fun and $\mathcal{D} \subseteq X$. Then, $\operatorname{Cl}(\mathcal{D})$ is a closed subset of X. By hypothesis, $\mathfrak{h}(\operatorname{Cl}(\mathcal{D}))$ is $\omega_{p}-\operatorname{closed}$ in Y. That is, $\omega_{p} \operatorname{Cl}(\mathfrak{h}(C l(\mathcal{D})))=\mathfrak{h}(C l(\mathcal{D}))$. Since, $\mathfrak{h}(\mathcal{D}) \subseteq \mathfrak{h}(C l(\mathcal{D}))$, then $\omega_{p} C l(\mathfrak{h}(\mathcal{D})) \subseteq \omega_{p} C l(\mathfrak{h}(C l(\mathcal{D})))=\mathfrak{h}(C l(\mathcal{D}))$. Therefore, $\omega_{p} C l(\mathfrak{h}(\mathcal{D})) \subseteq \mathfrak{h}(C l(\mathcal{D}))$. Conversely, we must show that \mathfrak{h} is ω_{p} - closed. Let \mathcal{D} be a closed subset of X. By hypothesis, $\omega_{p} \operatorname{Cl}(\mathfrak{h}(\mathcal{D})) \subseteq \mathfrak{h}(\operatorname{Cl}(\mathcal{D}))=$ $\mathfrak{h}(\mathcal{D})$. That is, $\mathfrak{h}(\mathcal{D})$ is ω_{p} - closed in Y.

Theorem 5.3. The following statement are equivalent, for a bijective Fun $\mathfrak{h}: X \rightarrow Y$:

1. \mathfrak{h} is an ω_{p}-closed;
2. $\mathfrak{h}^{-1}\left(\omega_{p} C l(\mathcal{D})\right) \subseteq C l(\mathfrak{h}(\mathcal{D}))$, for each $\mathcal{D} \subseteq Y$;
3. $\operatorname{Int}\left(\mathfrak{h}^{-1}(\mathcal{D})\right) \subseteq \mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathcal{D})\right)$, for each $\mathcal{D} \subseteq Y$.

Proof:

$(1) \Rightarrow(2)$ Let \mathfrak{h} be a ω_{p}-closed and $\mathcal{D} \subseteq Y$. Then, $\operatorname{Cl}(\mathfrak{h}(\mathcal{D}))$ is closed in X. By hypothesis, $\mathfrak{h}\left(\operatorname{Cl}\left(\mathfrak{h}^{-1}(\mathcal{D})\right)\right)$ is ω_{p} - closed in Y, this implies that,

$$
\omega_{p} C l\left(\mathfrak{h}\left(C l\left(\mathfrak{h}^{-1}(\mathcal{D})\right)\right)\right)=\mathfrak{h}\left(\operatorname{Cl}\left(\mathfrak{h}^{-1}(\mathcal{D})\right)\right) \quad(* *)
$$

Since \mathfrak{h} is bijective, thus $\mathcal{D}=\mathfrak{h}\left(\mathfrak{h}^{-1}(\mathcal{D})\right) \subseteq \mathfrak{h}\left(C l\left(\mathfrak{h}^{-1}(\mathcal{D})\right)\right)$. By $(* *) \omega_{p} \operatorname{Cl}(\mathcal{D}) \subseteq \omega_{p} \operatorname{Cl}\left(\mathfrak{h}\left(\operatorname{Cl}\left(\mathfrak{h}^{-1}(\mathcal{D})\right)\right)\right)=$ $\mathfrak{h}\left(\operatorname{Cl}\left(\mathfrak{h}^{-1}(\mathcal{D})\right)\right)$. Therefore, $\mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Cl}(\mathcal{D})\right) \subseteq \operatorname{Cl}\left(\mathfrak{h}^{-1}(\mathcal{D})\right)$.
(2) \Rightarrow (3) Let $U \subseteq Y$. Then, $Y-\mathcal{U} \subseteq Y$, by (2), $\mathfrak{h}^{-1}\left(\omega_{p} C l(Y-\mathcal{U})\right) \subseteq C l\left(\mathfrak{h}^{-1}(Y-\mathcal{U})\right.$. Thus, $X-$ $\mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathcal{U})\right) \subseteq X-\operatorname{Int}\left(\mathfrak{h}^{-1}(\mathcal{U})\right)$, this means that $\operatorname{Int}\left(\mathfrak{h}^{-1}(\mathcal{U})\right) \subseteq \mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathcal{U})\right)$.
(3) \Rightarrow (1) Let \mathcal{D} be a closed subset of X. To show that, \mathfrak{h} is ω_{p} - closed. Since, $\mathfrak{h}(X-\mathcal{D}) \subseteq Y$, so by (3), $\operatorname{Int}((\mathfrak{h}(X-\mathcal{D}))) \subseteq \mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Int}(\mathfrak{h}(X-\mathcal{D}))\right.$. By bijective of $\mathfrak{h}, X-\operatorname{Cl}(\mathcal{D}) \subseteq X-\mathfrak{h}^{-1}\left(\omega_{p} \operatorname{Cl}(\mathfrak{h}(\mathcal{D}))\right)$, then $\omega_{p} C l(\mathfrak{h}(\mathcal{D})) \subseteq(\mathfrak{h}(C l(\mathcal{D})))$. But \mathcal{D} is closed, thus $\omega_{p} C l(\mathfrak{h}(\mathcal{D})) \subseteq \mathfrak{h}(\mathcal{D})$, and $\mathfrak{h}(\mathcal{D})$ is closed in Y. Hence, \mathfrak{h} is ω_{p} - closed.

Theorem 5.4. Let $\mathfrak{h}: X \rightarrow Y$ be an ω_{p} - closed Fun. If \mathcal{K} is a closed subspace in X, then the restriction
Fun $\mathfrak{h}_{/ \mathcal{K}}: \mathcal{K} \rightarrow Y$ is ω_{p} - closed.
Proof: Let \mathcal{D} be any closed subset of \mathcal{K}. Since \mathcal{K} is closed in X, implies that \mathcal{D} is closed in X. By hypothesis,
$\mathfrak{h}(\mathcal{D})$ is $\omega_{p}-$ closed in Y. But, $\mathfrak{h}_{/ \mathcal{K}}(\mathcal{D})=\mathfrak{h}(\mathcal{D})$. Therefore, $\mathfrak{h}_{/ \mathcal{K}}$ is $\omega_{p}-$ closed Fun.
Theorem 5.5. Let $\zeta: X \rightarrow Y$ be a closed Fun and $\eta: Y \rightarrow Z$ be an ω_{p} - closed Fun. Then, $\eta \circ \zeta$ is an $\omega_{p}-$ closed Fun.
Proof: Let \mathcal{D} be any closed subset of X. Then, by hypothesis, $\zeta(\mathcal{D})$ is closed in Y. Since η is ω_{p} - closed, thus $\eta(\zeta(\mathcal{D}))$ is an ω_{p}-closed set in Z. Therefore, $\eta \circ \zeta$ is ω_{p} - closed.

Theorem 5.6. The following conditions are true, for the Funs $\mathfrak{g}: X \rightarrow Y$ and $\mathfrak{\mathfrak { h } : ~} Y \rightarrow Z$:

1. If $\mathfrak{b} \circ \mathfrak{g}$ is a closed Fun and \mathfrak{h} is an injective ω_{p}-continuous Fun, then \mathfrak{g} is ω_{p}-closed.
2. If $\mathfrak{h} \circ \mathfrak{g}$ is an ω_{p}-closed Fun and \mathfrak{g} is an surjective continuous Fun, then \mathfrak{b} is ω_{p} - closed. Proof.
3. Let \mathcal{D} be any closed subset of X. Then, by hypothesis, $\mathfrak{h}(\mathfrak{g}(\mathcal{D}))$ is closed in Z. Since \mathfrak{h} is injective
ω_{p} - continuous, $\mathfrak{h}^{-1}(\mathfrak{h}(\mathfrak{g}(\mathcal{D})))=\mathfrak{g}(\mathcal{D})$ is ω_{p}-closed in Y. Hence, \mathfrak{g} is ω_{p} - open.
4. Suppose \mathcal{D} is a closed subset of Y. Since g is continuous, then, $g^{-1}(\mathcal{D})$ is closed in X. By hypothesis,
$\mathfrak{h}\left(\mathfrak{g}\left(\mathfrak{g}^{-1}(\mathcal{D})\right)\right)=\mathfrak{h}(\mathcal{D})$ is an $\omega_{p}-$ closed set in Z. Therefore, \mathfrak{h} is ω_{p} - closed.
Theorem 5.7. The following conditions are equivalent, for a bijective Fun $\mathfrak{h}: X \rightarrow Y$:
5. h is ω_{p}-continuous;
6. h is ω_{p}-open;
7. h is ω_{p}-closed.

Proof:

(1) \Rightarrow (2) Let \mathcal{D} be any open set in X. Since \mathfrak{h}^{-1} is ω_{p}-continuous, thus, $\left(\mathfrak{h}^{-1}\right)^{-1}(\mathcal{D})=\mathfrak{h}(\mathcal{D})$ is $\omega_{p}-$ ope
in Y. Therefore, \mathfrak{h} is ω_{p}-open.
(2) \Rightarrow (3) Let \mathfrak{b} be an ω_{p} - open Fun, and \mathcal{D} be a closed set in X. Then, $X-\mathcal{D}$ is open. By hypothesis, $\mathfrak{h}(X-\mathcal{D})=Y-\mathfrak{h}(\mathcal{D})$ is ω_{p}-open in Y. Thus, $\mathfrak{h}(\mathcal{D})$ is $\omega_{p}-$ closed.
(3) \Rightarrow (1) Let \mathcal{D} be any open set in X. Then, $X-\mathcal{D}$ is closed. Since \mathfrak{h} is bijective and by (3), $\mathfrak{h}(X-\mathcal{D})=$
$Y-\mathfrak{h}(\mathcal{D})$ is ω_{p}-closed in Y. Thus, $\left(\mathfrak{h}^{-1}\right)^{-1}(\mathcal{D})=\mathfrak{h}(\mathcal{D})$ is ω_{p}-open. Hence, \mathfrak{h}^{-1} is ω_{p} - open.

6. CONCLUSION:

In this paper, we showed that every ω_{p} - open set in locally countable space is open. We used the notions of ω_{p}-open and ω_{p}-closed sets to describe ω_{p} - open and ω_{p}-closed Fun. Also, there is a relationship between open and preopen Funs via ω_{p} - open Funs. We acquired some fundamental theorems and properties of these Funs. However, there are combined ω_{p} - continuous Funs with ω_{p} open and ω_{p} - closed Fun.

ACKNOWLEDGMENTS

I'd like to thank the referees for their constructive feedback. as well as manuscript suggestions.

REFERENCES

1. Darwesh, H. M. 2013. Between Preopen and Open Sets in Topological Spaces, Thai Journal of Mathematics 11(1), 14355.
2. Levine, N. 1963. Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly, 70, 36-41.
3. Mashhour, A. S., Abd El-Monsef, M. E. and El-Deep S. N. 1982. On Precontinuous and Weak Precontinuous Mappings, Proc. Math. Phys. Soc. Egypt, 53, 47-53.
4. Mashhour, A. S., Hassanien I. A. and EL-Deeb S. N. 1983. α-Continuousand α-Open Mappings, Acta Mathematica Hungarica, 41, 213-218.
5. Abd EL-Monsef, M. E., El-Deeb S. N. and Mahmoud R. A. 1983. β-Open Sets and β-Continuous Mappings, Bulletin of the Faculty of Science A. Physics and Mathematics, 12, 77-90.
6. El-Atik, A. A. 1997. A Study on Some Types of Mappings on Topological Spaces, M.Sc. Thesis, Tanta Uni., Egypt.
7. Raychaudhuri, S. and Mukherjee, N. 1993. On δ-Almost Continuity and δ-Preopen Sets, Bulletin of the Institute of Mathematics Academia Sinica, 21, 357-366.
8. Stone, M. 1937. Applications of The Theory of Boolean Ring to General Topology, Trans. Amer. Math. Soc., 41, 375-481.
9. Njastad, O. 1965. On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics, 15, 961-970.
10. Velicko, N. V. 1968. H - Closed Topological Spaces, Transactions of the American Mathematical Society, 78, 103-118.
11. Hdeib, H. Z. 1982. ω - Closed Mapping, Revista Colombiana de Mathematics, 16, 65-78.
12. Biswas, N. 1969. On Some Mappings in Topological Spaces, Bulletin of Calcutta Mathematical Society, 61, 127-135.
13. Sharma, J. N. 1979, Krishna's Topology, Krishna Prakashan Media $1^{\text {st }}$ ed., India.
14. Al-Zoubi, K. and Al-Nashef, B. 2003. The Topology of ω - Open Subsets, Al-Manarah J., 9, 169-179.
15. Reilly, I. L. and Vamanamurthy M. K. 1990. On Some Questions Concerning Preopen Sets, Kyungpook Math. J., 30, 8793.
16. Darwesh, H. M. 2009. Some Types of Separation Axioms and Dimension Functions in Topological Spaces, PhD thesis, Sulaimani University, Sulaimani Kurdistan Region.

[^0]: * Corresponding Author: Shagull Hossein Mahmood

 E-mail: shagull.mahmmod@univsul.edu.iq
 Article History:
 Received: 01/08/2022
 Accepted: 15/09/2022
 Published: 07/12/2022

