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A B S T R A C T: In this `abc, we study and define two new concepts of functions named dE– fgh# and dE– ϲjakhl 
functions by using the concepts of dE − fgh# and dE −ϲjakhl sets. The concept of dE − fgh# function strictly located 
between both the concepts of fgh# and gbhfgh# functions. We obtain a few properties of these functions, however, the 
connections between them are examined. 
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1. INTRODUCTION: 

  In 1963, Levine [2] defined a new class of o-ê/ sets called semi-o-ê/ sets, also he introduced a new 
class of functions named ,ê[N-ϲ°/‹N/‰°‰, and semi-o-ê/ functions in the space of topology. Mashhour et 
al. [3] presented -Cê-ϲ°/‹N/‰°‰,, áê.V	-Cê-ϲ°/‹N/‰°‰, and -Cê-o-ê/ functions. The concepts of 
E−ϲ°/‹N/‰°‰, and E-o-ê/ functions are investigated and defined by Mashhour et al. [4]. 

Abd El-Monsef et el. [5] represented a new class of sets called { − o-ê/ sets, and they described {-
>°/‹N/‰°‰,	and {-o-ê/ functions. The notion of the E-o-ê/ function is investigated by El-Atik [6]. 
However, Raychaudhuri and Mukherjee [7] defined -−-Cêo-ê/ sets, also they present -−.„[°,‹ 
ϲ°/‹N/‰°‰, and ---Cêo-ê/ functions. 

The purpose of the	-.-êC is, we apply the notions of U"– o-ê/ and U"– ϲ„°,ê set to describe the new 
types of functions denoted by U" − o-ê/ and U" − ϲ„°,ê functions. In addition, the basic properties and the 
relation between these functions are presented. 
 

2. PRELIMINARIES 
     All through the present paper (q, V) and (b,ℑ) express the ,-.>ê, of ‹°-°„°›} on which no ,ê-.C.‹N°/ 
axioms are considered otherwise is clarified, also ä‰/ means function. If s ⊆ 	Χ, then the N/‹êCN°C (resp. 
U − N/‹êCN°C, - − N/‹êCN°C, U" − N/‹êCN°C) of s is the union of all o-ê/ (resp. U − o-ê/, - − o-ê/, U- −
o-ê/) sets in q contained in s represented by ◊/‹(s) (resp. U◊/‹(s), ◊/‹2(s), U"◊/‹(H). The ϲ„°,‰Cê 

(resp. U − ϲ„°,‰Cê, - − ϲ„°,‰Cê, U" − ϲ„°,‰Cê) of s is the N/‹êC,ê>‹N°/ of all ϲ„°,ê (resp. U − ϲ„°,ê, 

- − ϲ„°,ê, U" − ϲ„°,ê) sets of q containing s. A subset s in q is called ,ê[N − o-ê/ [2] (resp. 

Cê›‰„.C − o-ê/ [8], -Cêo-ê/ [3], E−o-ê/ [9], { − o-ê/, [5], E − o-ê/ [6], -−-Cêo-ê/ [7], U" − o-ê/ 

[1]) if s ⊆ M„(◊/‹(s)) (resp. s = ◊/‹(M„(s)), s ⊆ ◊/‹(M„(s)), s ⊆ ◊/‹(M„(◊/‹(s))), s ⊆
M„(◊/‹(M„(s))), s ⊆ ◊/‹(M„(s)) ∪ M„(◊/‹(s)), o ⊆ ◊/‹(M„2(s)), s ⊆ ◊/‹(UM„(s))).   
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Also, a subset s of Χ is called - − o-ê/ [10] if s is the ‰/N°/ of all Cê›‰„.C − o-ê/ subset of q, and a 
subset s is called U − o-ê/ [11] if for ê.ϲℎ * ∈ u, ‹ℎêCê	ê*N‹, an o-ê/ set v in q containing * such that 
v−	H is ϲ°‰/‹.D„ê. The family of all ,ê[N − o-en (resp. Cê›‰„.C − o-ê/, -Cêo-ê/, E − o-ê/, { − o-ê/, 
E − o-ê/, - − o-ê/, - − o-ê/, U − o-ê/, U" − o-ê/) subsets of q represented by ]B(q) (resp. œB(q), 
ÚB(q), E-B(q), {-B(q), E-B(q), --B(q), --ÚB(q), UB(q), U"B(q)). The complement of ,ê[N − o-ê/ 
(resp. Cê›‰„.C − o-ê/, -Cêo-ê/, E − o-ê/, { − o-ê/, E − o-ê/, - − -Cêo-ê/, U − °-ê/, U" − o-ê/) 
set is called ,ê[N − ϲ„°,ê (resp. Cê›‰„.C − ϲ„°,ê, -Cêϲ„°,ê, E − ϲ„°,ê, { − ϲ„°,ê, E − ϲ„°,ê, - −
-Cêϲ„°,ê, U − ϲ„°,ê U" − ϲ„°,ê), also their family is represented by ]M(q) (resp. œM(q), ÚM(q), E −
M(q), { − M(q), E − M(q), - − M(q), - − ÚM(q), UM(q), U"M(q)). 

Definition 2.1. Let w:q → b be a ä‰/. If w(s) is o-ê/ (resp. ,ê[N − o-ê/, -Cêo-ê/, E − o-ê/, { − o-ê/, 
- − -Cêo-ê/, E − o-ê/) in b, each o-ê/ subset s of q, thus, w is called o-ê/ (resp. ,ê[N − o-ê/ [12], 
-Cêo-ê/ [3], E − o-ê/ [4], { − o-ê/ [5], E − o-ê/ [6], - − -Cêo-ê/ [7]) ä‰/.  

 
Definition 2.2. Let w:q → b be a ä‰/. If w)*(s) is o-ê/ (U" − o-ê/) in q, each o-ê/ subset s of b, thus, 
w is called ϲ°/‹N/‰°‰, [13] (U" − ϲ°/‹N/‰°‰, [1]) ä‰/. 

 
Definition 2.3. ([14]) Let (q, V) be a ,-.>ê of ‹°-°„°›}. Then, a ,-.ϲê ! is said to be: 

1. ⁄°>.„„} ϲ°‰/‹.D„ê, if each -°N/t * ∈ ! has a ϲ°‰/‹.D„e o-ê/ /êN›ℎD°Cℎ°°. 
2. ]‰D[.*N[.„, if every -Cêo-ê/ set is o-ê/, equivalently if every dense subset of q is o-ê/ in q. 

 
Lemma 2.4. ([1]) For a set s in space q, the f°„„°áN/›, are true: 

1. Let s be an o-ê/ set. Then it is U" − o-ê/. 
2. Let s be an U" − o-ê/. Then it is -Cê − o-ê/, -Cê − U − o-ê/ and - − -Cêo-ê/. 

 
 Theorem 2.5. ([16]) Let (q, V) be a „°ϲ.„„} ϲ°‰/‹.D„ê ,-.ϲê. Then, VÑ = VT+3. 
 
 Proposition 2.6. ([1]) A subset s of ,-.ϲê q is U" − o-ê/ (U" − >„°,ê) ⟺ U"◊/‹(s) 	= 	s (U"M„(s) 	=
s). 

3. MORE PROPERTIES OF yÖ-OPEN SETS 

Theorem 3.1. Let (q, V) be a „°>.„„} ϲ°‰/‹.D„ê ,-.ϲê. Then, a set s in q is U" − o-ê/ ⟺ its o-ê/. 
Proof: If s is an U" − o-ê/ subset of a „°ϲ.„„} ϲ°‰/‹.D„ê	,-.ϲê	q, so UM„(s) = s, by Theorem 2.5, so 
u ⊆ ◊/‹(UM„(s)) = ◊/‹(s). This means that, s is an o-ê/ set. Conversely, let s be an o-ê/ set in q. Then, 
s = ◊/‹(s), so s ⊆ ◊/‹(UM„(s)). Hence, s N, an U" − o-ê/ set. 

 
Theorem 3.2. If (q, V) is a ,‰D[.*N[.„ ,-.ϲê, then a set s of q is U" − o-ê/ ⟺ its -Cê°-ê/. 
Proof: Let s be an U" − o-ê/ set in q. Then, by Lemma 2.4, s is -Cêo-ê/. Conversely, assume s is a 
-Cêo-ê/ set in . ,‰D[.*N[.„ ,-.>ê	q. Then, s is o-ê/. By part (1) of Lemma 2.4, s is U" − o-ê/.  
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4.yÖ-Open Functions 

Definition 4.1.  A ä‰/ w:q⟶ b is ,.N ‹° be U" − o-ê/, if the N[.›ê of ê.ϲℎ o-ê/ set in q is U" −
o-ê/ in b. 
Theorem 4.2. Let w:q⟶ b be a ä‰/. Then, w is an U" − o-ê/ ⇔ for ê.ϲℎ * ∈ q and ê.>ℎ o-ê/ set v in 
q containing *, there ê*N,‹, ./	U" − o-ê/ ,ê‹ | in	b containing w(*) such that | ⊆ }(v). 
Proof: Suppose v is an °-ê/ set in q such that * ∈ v. Then, w(v) is U" − 	°-ê/ N/ b, and w(*) ∈ }	(v). 
Put | = w(v) is U" − o-ê/, w(*) ∈ | and | = w(v). Conversely, let v be an o-ê/ ,ê‹ N/ q. To show w is 
U" − °-ê/. We must show w(v) is U" − °-ê/. If w(v) = ø, then its U" − °-ê/. Otherwise, let } ∈ w(v). 
Then, there ê*N,‹,	* ∈ v such that w(*) = }. Since * ∈ v, so by hypothesis, there ê*N,‹, an U" − °-ê/ 
subset | of q such that w(*) ∈ | ⊆ w(v) that is, } ∈ | ⊆ w(v). Therefore, } ∈ U"◊/‹(	w(v)). This implies 
that, w(v) = U"◊/‹(	w(v))	which by Proposition 2.6, means w(v) is ./ U" − °-ê/ set in b. Hence w is U" −
°-ê/. 

 
Theorem 4.3. The f°„„°áN/› ϲonditions are êÂ‰N‚.„ê/‹ for that ä‰/ w from a spaϲe q to spaϲe b: 

1. w is an U-−°-ê/; 
2. w	(◊/‹(s)) ⊆ U"◊/‹(w(s)), for ê.ϲℎ s ⊆ q; 
3. ◊/‹(w)*(s)) ⊆ w)*(U"◊/‹(s)), for ê.ϲℎ s ⊆ b; 
4. w)*(U"M„(s)) ⊆ M„(w)*(s)), for ê.ϲℎ s ⊆ b.  

 �ÄÅÅÇ: (1) ⇒ (2) Let s ⊆ !. Then, ◊/‹(s) is °-ê/ in q. By (1),	 w	(◊/‹(s)) is U" − °-ê/ in b, implies 
that, 

U"◊/‹(w	(◊/‹(s))) = w	(◊/‹(s))				(∗) 
]N/>ê, w	(◊/‹(s)) ⊆ w	(s), then, U"◊/‹(w	(◊/‹(s))) ⊆ U"◊/‹(w(s)), thus by (∗), w	(◊/‹(s)) ⊆
U"◊/‹(w	(s)). 
 
(2) ⇒ (3) Suppose v	N,	./}	,‰D,ê‹	°O	b. Then, w)*(v) ⊆ q, so by (2), w	(◊/‹(w)*(v))) ⊆
U"◊/‹(w	()*(v))) ⊆ U"◊/‹(v). Therefore, ◊/‹(w)*(v)) ⊆ w)*(U"◊/‹(v)). 
 
(3) ⇒ (4) Let v ⊆ b. Then, b −v ⊆ b. Thus D}	(3), ◊/‹(w)*(b −v)) ⊆ w)*(U"◊/‹(b −v)). So, ! −
M„(w)*(v)) ⊆ q − w)*(U"M„(v)). That is, w)*(U"M„(v)) ⊆ M„(w)*(v)). 
 
(4) ⇒ (1) Let s be an °-ê/ subset of q. Then, by (3), ◊/‹(w)*(w	(s))) ⊆ w)*(U"◊/‹(w	(s))). Since 
◊/‹(w	(w)*(s))) ⊆ w)*(U"◊/‹(w	(s))), so ◊/‹(s) ⊆ ◊/‹(w)*(w	(s))), implies that ◊/‹(s) ⊆
w)*(U"◊/‹(w(s))), but since s is °-ê/, then s ⊆ w)*(U"◊/‹(w	(s))). Thus, w(s) ⊆
w	(w)*(U"◊/‹(w(s)))) ⊆ U"◊/‹(w(s)). Therefore, w(s) is U"−°-ê/. Hence, w an	is U" − °-ê/ ä‰/. 
 



Proceeding of 3rd International Conference of Mathematics and its Applications 
TICMA2022 
https://conferences.su.edu.krd/su/ticma2022/ 
DOI: https://doi.org/10.31972/ticma2022 

                                                                                                                                                               
 

104 

 ÉÑÖÜÄá	…. …. The f°„„°áN/› implications show the Cê„.‹N°/,ℎN-	Dê‹áêê/ U" − °-ê/ ä‰/ and other 
types of °-ê/ ä‰/. 

FIGURE 1. ,ℎ°á,	‹ℎê	Cê„.‹N°/,ℎN-	Dê‹áêê/	U" − °-ê/	ä‰/	./	°‹ℎêC	‹}-ê,	°O	°-ê/	ä‰/ 
The f°„„°áN/› examples show that the converse of the implications in Figure 1 is not ‹C‰ê in gê/êC.„. 
 

Example 4.5. If ! = b = {1,2,3}, and V = ℑ = {ø, !, {1}, {1,2}}, then the ä‰/ } ∶ (q, V) → (b, Ω) is êON/ê 
by, }(1) = 1, }(2) = 3 ./	}(3) = 2 is -Cê°-ê/, but not U" − °-ê/. Since, ÚB(b) = {ø, b, {1}, {1,2}, {1,3}} 
and U"B(b) = {ø, b, {1}, {1,2}}. Thus, }({1,2}) = {1,3} is not U" − °-ê/ in b. 

 
Example 4.6. Consider q	 = 	ℝ with the ‰,‰.„ ‹°-°„°›} ℑ{ and b = ℝ áith the ϲ° − ϲ°‰/‹.D„ê ‹°-°„°›} 
V;R;. The Nê/‹N‹}	ä‰/ à: (q,ℑ{) → (b, V;R;) is U" − °-ê/ D‰‹ not °-ê/. Since (0,1) is °-ê/ in (ℝ,ℑ{), 
but à((0,1)) = (0,1) is not	(ℝ, V;R;), so it is not °-ê/ while for any °-ê/ subset s of (ℝ,ℑ{), there is an 
°-ê/ interval (., D) subset of s, and à(s) = s ⊆ ℝ = ◊/‹(M„((., D))) = ◊/‹(UM„((., D))) ⊆
◊/‹(UM„(s)) = ◊/‹(UM„(à(s))) which is U" − °-ê/ in (ℝ, V;R;), hence its U" − °-ê/ ä‰/.  
 
Theorem 4.7. If â:q → b	is an °-ê/ ä‰/ and Y:	b → ä is an U" − °-ê/ ä‰/, then Y ∘ â is an U" − °-ê/ 
ä‰/. 
Proof:  Let | be an °-ê/ subset of q. Then, by ℎ}-°‹ℎesis, â(|) is °-ê/ in b. Since Y is U" − °-ê/, thus 
Y(â(|)) is U" − °-ê/ in ä. Therefore, Y ∘ â is U" − °-ê/. 

 
Proposition 4.8. Let w be a ä‰/ from any sp.ϲe (q, V) to a „°ϲ.„„} ϲ°‰/‹.D„ê ,-.ϲê (b, Ω). Then, w is 
U" − °-ê/ ⟺ its °-ê/. 
Proof: Let w be an U" − °-ê/ ä‰/. Then, for ê.ϲℎ °-ê/ set v in q, thus w(v) is U" − °-ê/ in b. Since, b 
is „°ϲ.„„} ϲ°‰/‹.D„ê, thus by 'ℎê°Cê[	3.1, w(v) °-ê/ in b. Therefore, w is °-ê/. Conversely, N‹ follows 
OC°[ ⁄ê[[.	2.4. 

 
Proposition 4.9. Let w be a ä‰/ from any ,-.ϲê (q, V) to a ,‰D[.*N[.„ ,-.ϲê (b, Ω). Then, w is -Cê°-ê/ 
⟺ its U" − °-ê/. 
Proof: It folloá, from ÚC°-°,N‹N°/	3.2.  

 
Theorem 4.10. For the ä‰/, å ∶ q → 	b and w ∶ b	 → 	ä, the f°„„°áN/› ϲ°/N‹N°/, are ‹C‰ê: 

1. If w ∘ å is an °-ê/ ä‰/ and w is an N/Éêϲ‹N‚ê U" − ϲ°/‹N/‰°‰, ä‰/, then å is U" − °-ê/. 
2. If w ∘ å is an U" − °-ê/ ä‰/ and å is an ,‰CÉêϲ‹N‚ê ϲ°/‹N/‰°‰, ä‰/, then w is U" − °-ê/.  

Proof: 
1. Let v be any °-ê/	subset of q. Then, by ℎ}-°‹ℎê,N,, w`å(v)a is °-ê/ in ä. Since w is N/Éêϲ‹N‚ê 

U" − ϲ°/‹N/‰°‰,, thus, w)* sw`å(v)at = å(v) is U" − °-ê/ in b. Hence, å is U" − °-ê/.  
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2. Suppose v is an °-ê/ subset of b. By ℎ}-°‹ℎê,N,, å)*(v)		is °-ê/ in q. Since, w ∘ å is U" − °-ê/, 
w ∘ å(å)*(v)) is U" − °-ê/ in ä. Since, å is ,‰CÉêϲ‹N‚ê, so w(v) = w	(å(å)*(v))). Hence, w is an 
U" − °-ê/ ä‰/. 

Theorem 4.11. Let w ∶ q → 	b be an U" − °-ê/	ä‰/. If ç is an °-ê/ ,‰D,-.ϲê of q, then the Cê,‹CNϲ‹N°/ 
ä‰/ w/á 	 ∶ ç → b is U" − °-ê/. 

Proof: Let s be any °-ê/ subset of ç. Since ç is °-ê/ in q, implies that s is °-ê/ in q. By ℎ}-°‹ℎê,N,,
w(s) is U" − °-ê/ in b. But, w/á(s) = w(s). Therefore, w/á is U" − °-ê/ an ä‰/.  

5. yÖ-CLOSED FUNCTIONS  

Definition 5.1. A ä‰/ w ∶ q → 	b is ,.N to be an U" − ϲ„°,ê	ä‰/, if the N[.›ê of ê.ϲℎ ϲ„°,ê set in q 
is U" − ϲ„°,ê in b. 
 
Theorem 5.2. Let w ∶ q → 	b be a ä‰/. Then, w  is U" − ϲ„°,ê ⟺ 		U"M„(w(s)) ⊆ w(M„(s)), for ê.ϲℎ 
s ⊆ q. 
Proof: Let w be an U" − ϲ„°,ê ä‰/ and s ⊆ q. Then, M„(s) is a ϲ„°,ê subset of q. By ℎ}-°‹ℎê,N,, 
w(M„(s)) is U" − ϲ„°,ê in b. That is, U"M„(w(M„(s))) = w(M„(s)). Since, w(s) ⊆ w(M„(s)), then 
U"M„(w(s)) ⊆ U"M„(w(M„(s))) = w(M„(s)). Therefore, U"M„(w(s)) ⊆ w(M„(s)). Conversely, we must 
show that w is U" − 	ϲ„°,ê. Let s be a ϲ„°,ê subset of q. By ℎ}-°‹ℎê,N,, U"M„(w(s)) ⊆ w(M„(s)) =
w(s). That is, w(s) is U" − ϲ„°,ê in b. 

 
Theorem 5.3. The f°„„°áN/› ,‹.‹ê[ê/‹ are êÂ‰N‚.„ê/‹, for a DNÉêϲ‹N‚ê ä‰/ w ∶ q → 	b ∶ 

1. w is an U" − ϲ„°,ê; 
2. w)*(U"M„(s)) ⊆ 	M„(w(s)), for ê.ϲℎ s ⊆ 	b; 
3. ◊/‹(w)*	(s)) ⊆ w)*(U"◊/‹	(s)), for ê.ϲℎ s ⊆ 	b. 

Proof: 
(1) ⇒ 	 (2) Let w be a U" − ϲ„°,ê and s ⊆ 	b. Then, M„(w(s)) is ϲ„°,ê in q. By 
ℎ}-°‹ℎê,N,, w(M„(w)*(s))) is U" − ϲ„°,ê in b, this implies that,  

	U"	M„ kw sM„`w)*(s)atm = w sM„`w)*(s)at												(∗∗) 
Since w is DNÉêϲ‹N‚ê, thus s = w(w)*	(s)) ⊆ w(M„(w)*(s))). By (∗∗) U"M„(s) ⊆ U"M„(w(M„(w)*(s)))) =
w(M„(w)*(s))). Therefore, w)*(U"M„(s)) ⊆ 	M„(w)*(s)). 

 
(2) ⇒ 	 (3) Let v ⊆ 	b. Then, b −v ⊆ 	b, by (2), w)*(U"M„(b −v)) ⊆ 	M„(w)*(b −v)). Thus, ! −
w)*(U"◊/‹(v)) ⊆ 	! − ◊/‹(w)*(v)), this means that ◊/‹(w)*(v)) ⊆ w)*(U"◊/‹(v)). 

 
(3) ⇒ 	 (1) Let s be a ϲ„°,ê subset of q. To show that, w is U" − ϲ„°,ê. Since, w(q − s) ⊆ 	b, so by (3), 
◊/‹((w(q − s))) ⊆ w)*(U"◊/‹(w(q − s)). By DNÉêϲ‹N‚ê of w, q − M„(s) ⊆ q − w)*(U"M„(w(s))), then 
U"M„(w(s)) ⊆ (w(M„(s))). But s is ϲ„°,ê, thus U"M„(w(s)) ⊆ w(s), and w	(s) is ϲ„°,ê in b. Hence, w 
N, U" − 	ϲ„°,ê. 

 
Theorem 5.4. Let w:q → 	b be an U" − 	ϲ„°,ê ä‰/. If ç	is a ϲ„°,ê ,‰D,-.ϲê in q, then the 
Cê,‹CNϲ‹N°/	 
ä‰/ w/á ∶ ç → b is U" − 	ϲ„°,ê. 
Proof: Let s be any ϲ„°,ê subset of ç. Since ç is ϲ„°,ê in q, implies that s is ϲ„°,ê in !. 
l}	ℎ}-othesis, 
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w(s) is U" − 	ϲ„°,ê in b. But, w/á(s) = 	w	(s). Therefore, w/á 		is U" − 	ϲ„°,ê ä‰/. 
 
Theorem 5.5. Let â:q	 → 	b be a ϲ„°,ê Fun and Y: b → ä be an U" − ϲ„°,ê ä‰/. Then, Y ∘ â is an U" − 
ϲ„°,ê ä‰/. 
Proof: Let s be any ϲ„°,ê subset of q. Then, by ℎ}-°‹ℎê,N,, â(s) is ϲ„°,ê in b. Since Y is U" 	− ϲ„°,ê, 
thus Y(â(s)) is ./ U" − ϲ„°,ê ,ê‹ in ä. Therefore, Y ∘ â is U" − ϲ„°,ê. 
 
Theorem 5.6. The f°„„°áN/› ϲ°/N‹N°/, are ‹C‰ê, for the ä‰/, å:q	 → 	b and w: b → ä: 

1. If w ∘ å is a ϲ„°,ê ä‰/ and w is an N/Éêϲ‹N‚ê U" − ϲ°/‹N/‰°‰, ä‰/, then å is U" − ϲ„°,ê. 
2. If w ∘ å is an U" − ϲ„°,ê ä‰/ and å is an ,‰CÉêϲ‹N‚ê ϲontinuous ä‰/, then w is U" − ϲ„°,ê. 

ÚC°°O. 
1. Let s be any ϲ„°,ê subset of q. Then, by ℎ}-°‹ℎê,N,, w(å(s)) is >„°,ê in ä. Since w is 

N/Éêϲ‹N‚ê  

U" − ϲ°/‹N/‰°‰,, w)* sw`å(s)at = å(s) is U" − ϲ„°,ê in b. Hence, å	N,	U" − °-ê/. 

 
2. Suppose s is a ϲ„°,ê subset of b. Since å is ϲ°/‹N/‰°‰,, then, å)*(s) is ϲ„°,ê in q. By 

ℎ}-othesis, 

w så`å)*(s)at = w(s) is ./ U" − >„°,ê set in ä. Therefore, w is U" − ϲ„°,ê. 

 
Theorem 5.7. The O°„„°áN/› ϲonditions are êÂ‰N‚.„ê/‹, for a DNÉêϲ‹N‚ê ä‰/ w:q	 → 	b: 
						1.					ℎ is U" − ϲ°/‹N/‰°‰,; 
						2.					ℎ is U" − °-ê/; 
						3.					ℎ is U" − ϲ„°,ê. 

Proof: 
(1) ⇒ 	 (2)	Let s be any °-ê/ set in q. Since w)* is U" − ϲ°/‹N/‰°‰,, thus, (w)*))*(s) = w(s) is U" −

°-ê 
in b. Therefore, w is U" − °-ê/. 
	
(2) ⇒ 	 (3) Let w be an U" − °-ê/ ä‰/, and s be a ϲ„°,ê set in q. Then, q − s is °-ê/. By ℎ}-°‹ℎê,N,,  

w(q − s) 	= 	b − w(s) is U" − °-ê/ in b. Thus, w(s) is U" − ϲ„°,ê. 
 
(3) ⇒ 	 (1) Let s be any °-ê/ set in q. Then, q − s is ϲ„°,ê. Since w is DNÉêϲ‹N‚ê and by (3), 

w	(q − s) = 
b − w(s) is U" − ϲ„°,ê in b. Thus, (w)*))*(s) 	= w	(s) is U" − °-ê/. Hence, w)* is U" − °-ê/. 

 

6. CONCLUSION: 

I/ this -.-êC, we showed that every U" − °-ê/ set in „°ϲ.„„} ϲ°‰/‹.D„ê space is °-ê/. We used 
the /°‹N°/, of U" − °-ê/ and U" − ϲ„°,ê sets to describe U" − °-ê/ and U" − ϲ„°,ê ä‰/. Also, there 
is a relationship between °-ê/ and -Cê°-ê/ ä‰/, via U" − °-ê/ ä‰/s. We acquired some O‰/.[ê/‹.„ 
‹ℎê°Cê[, and properties of these ä‰/s. However, there are combined U" − ϲ°/‹N/‰°‰, ä‰/s with U" −
	°-ê/ and U" − ϲ„°,ê ä‰/. 
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