Third International Conference of Mathematics and its Applications

(TICMA 2022)

Sciences

زانكۆى سەلاخەدىن - ھەولىر College of science / Mathematics Department Salahaddin University-Erbil 29-31 August 2022

زانكۆى سەلاحەدىن - ھەولىر Salahaddin University-Erbil

College of science / Mathematics Department

RESEARCH PAPER

ω_p -Open and ω_p -Closed Functions

Halgwrd Mohammed Darwesh^{1, a} And Shagull Hossein Mahmood^{2, b,*}

^{1,2} Department of Mathematics, College of Science, University of Sulaimani, 46001 Sulaimani, Kurdistan Region, Iraq

> ^ahalgwrd.darwesh@univsul.edu.iq ^bshagull.mahmmod@univsul.edu.iq

A B S T R A C T: In this work, we study and define two new concepts of functions named ω_p -open and ω_p -closed functions by using the concepts of ω_p - open and ω_p -closed sets. The concept of ω_p - open function strictly located between both the concepts of open and preopen functions. We obtain a few properties of these functions, however, the connections between them are examined.

KEYWORDS: ω_p -closed set, ω_p -open set, ω_p -continuous function, ω_p – closed function, ω_p -open function. DOI: <u>https://doi.org/10.31972/ticma22.12</u>

1. INTRODUCTION:

In 1963, Levine [2] defined a new class of *open* sets called semi-*open* sets, also he introduced a new class of functions named *semi-continuous* and semi-*open* functions in the space of topology. Mashhour et al. [3] presented *pre-continuous*, weak pre-continuous and pre-open functions. The concepts of α -continuous and α -open functions are investigated and defined by Mashhour et al. [4].

Abd El-Monsef et el. [5] represented a new class of sets called β – open sets, and they described β continuous and β -open functions. The notion of the γ -open function is investigated by El-Atik [6]. However, Raychaudhuri and Mukherjee [7] defined δ -preopen sets, also they present δ -almost continuous and δ -preopen functions.

The purpose of the *paper* is, we apply the notions of ω_p -open and ω_p -closed set to describe the new types of functions denoted by ω_p - open and ω_p - closed functions. In addition, the basic properties and the relation between these functions are presented.

2. PRELIMINARIES

All through the present paper (X, τ) and (Y, \mathfrak{I}) express the *spaces* of *topology* on which no *separation* axioms are considered otherwise is clarified, also *Fun* means function. If $\mathcal{D} \subseteq X$, then the *interior* (resp. $\omega - interior$, $\delta - interior$, $\omega_p - interior$) of \mathcal{D} is the union of all open (resp. $\omega - open$, $\delta - open$, $\omega_p - open$) sets in X contained in \mathcal{D} represented by $Int(\mathcal{D})$ (resp. $\omega Int(\mathcal{D})$, $Int_{\delta}(\mathcal{D})$, $\omega_p Int(\mathcal{D})$. The closure (resp. $\omega - closure$, $\delta - closure$, $\omega_p - closure$) of \mathcal{D} is the *intersection* of all closed (resp. $\omega - closed$, $\delta - closed$, $\omega_p - closed$) sets of X containing \mathcal{D} . A subset \mathcal{D} in X is called *semi - open* [2] (resp. *regular - open* [8], *preopen* [3], α -*open* [9], β - *open*, [5], γ - *open* [6], δ -*preopen* [7], ω_p - *open* [1]) if $\mathcal{D} \subseteq Cl(Int(\mathcal{D}))$ (resp. $\mathcal{D} = Int(Cl(\mathcal{D}))$, $\mathcal{D} \subseteq Int(Cl(Int(\mathcal{D})))$, $\mathcal{D} \subseteq Int(Cl(Int(\mathcal{D})))$.

Also, a subset \mathcal{D} of X is called δ – open [10] if \mathcal{D} is the union of all regular – open subset of X, and a subset \mathcal{D} is called ω – open [11] if for each $x \in A$, there exits an open set \mathcal{U} in X containing x such that \mathcal{U} – D is countable. The family of all semi – open (resp. regular – open, preopen, α – open, β – open, γ – open, δ – open, ω – open, ω_p – open) subsets of X represented by SO(X) (resp. RO(X), PO(X), α -O(X), β -O(X), γ -O(X), δ -O(X), δ -O(X), ω (X), $\omega_pO(X)$). The complement of semi – open (resp. regular – open, ω_p – open, β – open, ω_p – open, δ – preopen, ω_p – open) set is called semi – closed (resp. regular – closed, preclosed, α – closed, β – closed, γ – closed, δ – preclosed, ω_p – closed (ω_p – closed), also their family is represented by SC(X) (resp. RC(X), PC(X), α – C(X), β – C(X), δ – C(X), δ – PC(X), $\omega C(X)$, $\omega_p C(X)$).

Definition 2.1. Let $\mathfrak{h}: X \to Y$ be a Fun. If $\mathfrak{h}(\mathcal{D})$ is open (resp. semi – open, preopen, α – open, β – open, δ – preopen, γ – open) in Y, each open subset \mathcal{D} of X, thus, \mathfrak{h} is called open (resp. semi – open [12], preopen [3], α – open [4], β – open [5], γ – open [6], δ – preopen [7]) Fun.

Definition 2.2. Let $\mathfrak{h}: X \to Y$ be a Fun. If $\mathfrak{h}^{-1}(\mathcal{D})$ is open $(\omega_p - open)$ in X, each open subset \mathcal{D} of Y, thus, \mathfrak{h} is called continuous [13] $(\omega_p - continuous$ [1]) Fun.

Definition 2.3. ([14]) Let (X, τ) be a *space* of *topology*. Then, a *space* X is said to be:

- 1. Locally countable, if each point $x \in X$ has a countable open neighborhood.
- 2. Submaximal, if every preopen set is open, equivalently if every dense subset of X is open in X.

Lemma 2.4. ([1]) For a set \mathcal{D} in space *X*, the followings are true:

- 1. Let \mathcal{D} be an *open* set. Then it is $\omega_p open$.
- 2. Let \mathcal{D} be an ω_p open. Then it is pre open, pre ω open and δ preopen.

Theorem 2.5. ([16]) Let (X, τ) be a locally countable space. Then, $\tau^{\omega} = \tau_{dis}$.

Proposition 2.6. ([1]) A subset \mathcal{D} of space X is $\omega_p - open(\omega_p - closed) \Leftrightarrow \omega_p Int(\mathcal{D}) = \mathcal{D}(\omega_p Cl(\mathcal{D}) = \mathcal{D}).$

3. MORE PROPERTIES OF ω_p -OPEN SETS

Theorem 3.1. Let (X, τ) be a locally countable space. Then, a set \mathcal{D} in X is $\omega_p - open \Leftrightarrow$ its open. **Proof:** If \mathcal{D} is an $\omega_p - open$ subset of a locally countable space X, so $\omega Cl(\mathcal{D}) = \mathcal{D}$, by Theorem 2.5, so $A \subseteq Int(\omega Cl(\mathcal{D})) = Int(\mathcal{D})$. This means that, \mathcal{D} is an open set. Conversely, let \mathcal{D} be an open set in X. Then, $\mathcal{D} = Int(\mathcal{D})$, so $\mathcal{D} \subseteq Int(\omega Cl(\mathcal{D}))$. Hence, \mathcal{D} is an $\omega_p - open$ set.

Theorem 3.2. If (X, τ) is a submaximal space, then a set \mathcal{D} of X is $\omega_p - open \Leftrightarrow$ its preopen. **Proof:** Let \mathcal{D} be an $\omega_p - open$ set in X. Then, by Lemma 2.4, \mathcal{D} is preopen. Conversely, assume \mathcal{D} is a preopen set in a submaximal space X. Then, \mathcal{D} is open. By part (1) of Lemma 2.4, \mathcal{D} is $\omega_p - open$.

4. ω_p -Open Functions

Definition 4.1. A Fun $\mathfrak{h}: X \to Y$ is said to be $\omega_p - open$, if the *image* of each open set in X is $\omega_p - open$ in Y.

Theorem 4.2. Let $\mathfrak{h}: X \to Y$ be a Fun. Then, \mathfrak{h} is an $\omega_p - open \Leftrightarrow$ for each $x \in X$ and each open set \mathcal{U} in X containing x, there exists an $\omega_p - open \text{ set } \mathcal{V}$ in Y containing $\mathfrak{h}(x)$ such that $\mathcal{V} \subseteq \mathfrak{f}(\mathcal{U})$.

Proof: Suppose \mathcal{U} is an open set in X such that $x \in \mathcal{U}$. Then, $\mathfrak{h}(\mathcal{U})$ is $\omega_p - open$ in Y, and $\mathfrak{h}(x) \in \mathfrak{f}(\mathcal{U})$. Put $\mathcal{V} = \mathfrak{h}(\mathcal{U})$ is $\omega_p - open$, $\mathfrak{h}(x) \in \mathcal{V}$ and $\mathcal{V} = \mathfrak{h}(\mathcal{U})$. Conversely, let \mathcal{U} be an open set in X. To show \mathfrak{h} is $\omega_p - open$. We must show $\mathfrak{h}(\mathcal{U})$ is $\omega_p - open$. If $\mathfrak{h}(\mathcal{U}) = \emptyset$, then its $\omega_p - open$. Otherwise, let $y \in \mathfrak{h}(\mathcal{U})$. Then, there exists $x \in \mathcal{U}$ such that $\mathfrak{h}(x) = y$. Since $x \in \mathcal{U}$, so by hypothesis, there exists an $\omega_p - open$ subset \mathcal{V} of X such that $\mathfrak{h}(x) \in \mathcal{V} \subseteq \mathfrak{h}(\mathcal{U})$ that is, $y \in \mathcal{V} \subseteq \mathfrak{h}(\mathcal{U})$. Therefore, $y \in \omega_p Int(\mathfrak{h}(\mathcal{U}))$. This implies that, $\mathfrak{h}(\mathcal{U}) = \omega_p Int(\mathfrak{h}(\mathcal{U}))$ which by Proposition 2.6, means $\mathfrak{h}(\mathcal{U})$ is an $\omega_p - open$ set in Y. Hence \mathfrak{h} is $\omega_p - open$.

Theorem 4.3. The following conditions are equivalent for that Fun h from a space X to space Y:

- 1. \mathfrak{h} is an ωp -open;
- 2. $\mathfrak{h}(Int(\mathcal{D})) \subseteq \omega_p Int(\mathfrak{h}(\mathcal{D}))$, for each $\mathcal{D} \subseteq X$;
- 3. $Int(\mathfrak{h}^{-1}(\mathcal{D})) \subseteq \mathfrak{h}^{-1}(\omega_p Int(\mathcal{D}))$, for each $\mathcal{D} \subseteq Y$;
- 4. $\mathfrak{h}^{-1}(\omega_n Cl(\mathcal{D})) \subseteq Cl(\mathfrak{h}^{-1}(\mathcal{D}))$, for each $\mathcal{D} \subseteq Y$.

Proof: (1) \Rightarrow (2) Let $\mathcal{D} \subseteq X$. Then, $Int(\mathcal{D})$ is open in X. By (1), $\mathfrak{h}(Int(\mathcal{D}))$ is $\omega_p - open$ in Y, implies that,

$$\omega_p Int(\mathfrak{h}(Int(\mathcal{D}))) = \mathfrak{h}(Int(\mathcal{D})) \quad (*)$$

Since, $\mathfrak{h}(Int(\mathcal{D})) \subseteq \mathfrak{h}(\mathcal{D})$, then, $\omega_p Int(\mathfrak{h}(Int(\mathcal{D}))) \subseteq \omega_p Int(\mathfrak{h}(\mathcal{D}))$, thus by (*), $\mathfrak{h}(Int(\mathcal{D})) \subseteq \omega_p Int(\mathfrak{h}(\mathcal{D}))$.

(2) \Rightarrow (3) Suppose \mathcal{U} is any subset of Y. Then, $\mathfrak{h}^{-1}(\mathcal{U}) \subseteq X$, so by (2), $\mathfrak{h}(Int(\mathfrak{h}^{-1}(\mathcal{U}))) \subseteq \omega_p Int(\mathfrak{h}(^{-1}(\mathcal{U}))) \subseteq \mathfrak{h}^{-1}(\omega_p Int(\mathcal{U}))$.

(3) \Rightarrow (4) Let $\mathcal{U} \subseteq Y$. Then, $Y - \mathcal{U} \subseteq Y$. Thus by (3), $Int(\mathfrak{h}^{-1}(Y - \mathcal{U})) \subseteq \mathfrak{h}^{-1}(\omega_p Int(Y - \mathcal{U}))$. So, $X - Cl(\mathfrak{h}^{-1}(\mathcal{U})) \subseteq X - \mathfrak{h}^{-1}(\omega_p Cl(\mathcal{U}))$. That is, $\mathfrak{h}^{-1}(\omega_p Cl(\mathcal{U})) \subseteq Cl(\mathfrak{h}^{-1}(\mathcal{U}))$.

 $(4) \Rightarrow (1)$ Let \mathcal{D} be an *open* subset of X. Then, by (3), $Int(\mathfrak{h}^{-1}(\mathfrak{h}(\mathcal{D}))) \subseteq \mathfrak{h}^{-1}(\omega_p Int(\mathfrak{h}(\mathcal{D})))$. Since $Int(\mathfrak{h}(\mathfrak{h}^{-1}(\mathcal{D}))) \subseteq \mathfrak{h}^{-1}(\omega_p Int(\mathfrak{h}(\mathcal{D})))$, so $Int(\mathcal{D}) \subseteq Int(\mathfrak{h}^{-1}(\mathfrak{h}(\mathcal{D})))$, implies that $Int(\mathcal{D}) \subseteq \mathfrak{h}^{-1}(\omega_p Int(\mathfrak{h}(\mathcal{D})))$, but since \mathcal{D} is *open*, then $\mathcal{D} \subseteq \mathfrak{h}^{-1}(\omega_p Int(\mathfrak{h}(\mathcal{D})))$. Thus, $\mathfrak{h}(\mathcal{D}) \subseteq \mathfrak{h}(\mathfrak{h}^{-1}(\omega_p Int(\mathfrak{h}(\mathcal{D})))) \subseteq \omega_p Int(\mathfrak{h}(\mathcal{D}))$. Therefore, $\mathfrak{h}(\mathcal{D})$ is ω_p -open. Hence, \mathfrak{h} an is ω_p - open Fun.

Remark 4.4. The following implications show the relationship between ω_p – open Fun and other types of open Fun.

FIGURE 1. shows the relationship between ω_p – open Fun and other types of open Fun The following examples show that the converse of the implications in Figure 1 is not true in general.

Example 4.5. If $X = Y = \{1,2,3\}$, and $\tau = \mathfrak{I} = \{\emptyset, X, \{1\}, \{1,2\}\}$, then the Fun $\mathfrak{f} : (X, \tau) \to (Y, \rho)$ is defined by, $\mathfrak{f}(1) = 1, \mathfrak{f}(2) = 3$ and $\mathfrak{f}(3) = 2$ is preopen, but not $\omega_p - open$. Since, $PO(Y) = \{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}\}$ and $\omega_p O(Y) = \{\emptyset, Y, \{1\}, \{1,2\}\}$. Thus, $\mathfrak{f}(\{1,2\}) = \{1,3\}$ is not $\omega_p - open$ in Y.

Example 4.6. Consider $X = \mathbb{R}$ with the usual topology \mathfrak{I}_u and $Y = \mathbb{R}$ with the co-countable topology τ_{coc} . The identity Fun $\iota: (X, \mathfrak{I}_u) \to (Y, \tau_{coc})$ is ω_p - open but not open. Since (0,1) is open in $(\mathbb{R}, \mathfrak{I}_u)$, but $\iota((0,1)) = (0,1)$ is not (\mathbb{R}, τ_{coc}) , so it is not open while for any open subset \mathcal{D} of $(\mathbb{R}, \mathfrak{I}_u)$, there is an open interval (a,b) subset of \mathcal{D} , and $\iota(\mathcal{D}) = \mathcal{D} \subseteq \mathbb{R} = Int(Cl((a,b))) = Int(\omega Cl((a,b))) \subseteq Int(\omega Cl(\iota(\mathcal{D})))$ which is ω_p - open in (\mathbb{R}, τ_{coc}) , hence its ω_p - open Fun.

Theorem 4.7. If $\zeta: X \to Y$ is an open Fun and $\eta: Y \to Z$ is an ω_p – open Fun, then $\eta \circ \zeta$ is an ω_p – open Fun.

Proof: Let \mathcal{V} be an open subset of X. Then, by hypothesis, $\zeta(\mathcal{V})$ is open in Y. Since η is ω_p – open, thus $\eta(\zeta(\mathcal{V}))$ is ω_p – open in Z. Therefore, $\eta \circ \zeta$ is ω_p – open.

Proposition 4.8. Let \mathfrak{h} be a *Fun* from any space (X, τ) to a *locally countable space* (Y, ρ) . Then, \mathfrak{h} is $\omega_p - open \Leftrightarrow$ its open.

Proof: Let \mathfrak{h} be an ω_p – open Fun. Then, for each open set \mathcal{U} in X, thus $\mathfrak{h}(\mathcal{U})$ is ω_p – open in Y. Since, Y is locally countable, thus by Theorem 3.1, $\mathfrak{h}(\mathcal{U})$ open in Y. Therefore, \mathfrak{h} is open. Conversely, it follows from Lemma 2.4.

Proposition 4.9. Let \mathfrak{h} be a *Fun* from any *space* (X, τ) to a *submaximal space* (Y, ρ) . Then, \mathfrak{h} is *preopen* \Leftrightarrow its $\omega_p - open$.

Proof: It follows from *Proposition* 3.2.

Theorem 4.10. For the *Funs* $g: X \to Y$ and $\mathfrak{h}: Y \to Z$, the following conditions are true:

- 1. If $\mathfrak{h} \circ \mathfrak{g}$ is an open Fun and \mathfrak{h} is an injective ω_p continuous Fun, then \mathfrak{g} is ω_p open.
- 2. If $\mathfrak{h} \circ \mathfrak{g}$ is an ω_p open Fun and \mathfrak{g} is an surjective continuous Fun, then \mathfrak{h} is ω_p open.

Proof:

1. Let \mathcal{U} be any open subset of X. Then, by hypothesis, $\mathfrak{h}(\mathfrak{g}(\mathcal{U}))$ is open in Z. Since \mathfrak{h} is injective $\omega_p - \text{continuous}$, thus, $\mathfrak{h}^{-1}(\mathfrak{h}(\mathfrak{g}(\mathcal{U}))) = \mathfrak{g}(\mathcal{U})$ is $\omega_p - \text{open}$ in Y. Hence, \mathfrak{g} is $\omega_p - \text{open}$.

Suppose U is an open subset of Y. By hypothesis, g⁻¹(U) is open in X. Since, h ∘ g is ω_p − open, h ∘ g(g⁻¹(U)) is ω_p − open in Z. Since, g is surjective, so h(U) = h (g(g⁻¹(U))). Hence, h is an ω_p − open Fun.

Theorem 4.11. Let $\mathfrak{h} : X \to Y$ be an ω_p – open Fun. If \mathcal{K} is an open subspace of X, then the restriction Fun $\mathfrak{h}_{/\mathcal{K}} : \mathcal{K} \to Y$ is ω_p – open.

Proof: Let \mathcal{D} be any *open* subset of \mathcal{K} . Since \mathcal{K} is *open* in X, implies that \mathcal{D} is *open* in X. By *hypothesis*, $\mathfrak{h}(\mathcal{D})$ is $\omega_p - open$ in Y. But, $\mathfrak{h}_{/\mathcal{K}}(\mathcal{D}) = \mathfrak{h}(\mathcal{D})$. Therefore, $\mathfrak{h}_{/\mathcal{K}}$ is $\omega_p - open$ an *Fun*.

5. ω_p -CLOSED FUNCTIONS

Definition 5.1. A Fun $\mathfrak{h} : X \to Y$ is said to be an ω_p – closed Fun, if the image of each closed set in X is ω_p – closed in Y.

Theorem 5.2. Let $\mathfrak{h} : X \to Y$ be a Fun. Then, \mathfrak{h} is $\omega_p - closed \Leftrightarrow \omega_p Cl(\mathfrak{h}(\mathcal{D})) \subseteq \mathfrak{h}(Cl(\mathcal{D}))$, for each $\mathcal{D} \subseteq X$.

Proof: Let \mathfrak{h} be an $\omega_p - closed$ Fun and $\mathcal{D} \subseteq X$. Then, $Cl(\mathcal{D})$ is a closed subset of X. By hypothesis, $\mathfrak{h}(Cl(\mathcal{D}))$ is $\omega_p - closed$ in Y. That is, $\omega_p Cl(\mathfrak{h}(Cl(\mathcal{D}))) = \mathfrak{h}(Cl(\mathcal{D}))$. Since, $\mathfrak{h}(\mathcal{D}) \subseteq \mathfrak{h}(Cl(\mathcal{D}))$, then $\omega_p Cl(\mathfrak{h}(\mathcal{D})) \subseteq \omega_p Cl(\mathfrak{h}(Cl(\mathcal{D}))) = \mathfrak{h}(Cl(\mathcal{D}))$. Therefore, $\omega_p Cl(\mathfrak{h}(\mathcal{D})) \subseteq \mathfrak{h}(Cl(\mathcal{D}))$. Conversely, we must show that \mathfrak{h} is $\omega_p - closed$. Let \mathcal{D} be a closed subset of X. By hypothesis, $\omega_p Cl(\mathfrak{h}(\mathcal{D})) \subseteq \mathfrak{h}(Cl(\mathcal{D})) = \mathfrak{h}(Cl(\mathcal{D})) = \mathfrak{h}(\mathcal{D})$. That is, $\mathfrak{h}(\mathcal{D})$ is $\omega_p - closed$ in Y.

Theorem 5.3. The following statement are equivalent, for a bijective Fun $\mathfrak{h} : X \to Y :$

- 1. \mathfrak{h} is an ω_p closed;
- 2. $\mathfrak{h}^{-1}(\omega_p Cl(\mathcal{D})) \subseteq Cl(\mathfrak{h}(\mathcal{D}))$, for each $\mathcal{D} \subseteq Y$;
- 3. $Int(\mathfrak{h}^{-1}(\mathcal{D})) \subseteq \mathfrak{h}^{-1}(\omega_p Int(\mathcal{D}))$, for each $\mathcal{D} \subseteq Y$.

Proof:

(1) \Rightarrow (2) Let \mathfrak{h} be a ω_p - closed and $\mathcal{D} \subseteq Y$. Then, $Cl(\mathfrak{h}(\mathcal{D}))$ is closed in X. By hypothesis, $\mathfrak{h}(Cl(\mathfrak{h}^{-1}(\mathcal{D})))$ is ω_p - closed in Y, this implies that,

$$\omega_p \, Cl\left(\mathfrak{h}\left(Cl(\mathfrak{h}^{-1}(\mathcal{D}))\right)\right) = \mathfrak{h}\left(Cl(\mathfrak{h}^{-1}(\mathcal{D}))\right) \qquad (**)$$

Since \mathfrak{h} is *bijective*, thus $\mathcal{D} = \mathfrak{h}(\mathfrak{h}^{-1}(\mathcal{D})) \subseteq \mathfrak{h}(Cl(\mathfrak{h}^{-1}(\mathcal{D})))$. By $(**) \omega_p Cl(\mathcal{D}) \subseteq \omega_p Cl(\mathfrak{h}(Cl(\mathfrak{h}^{-1}(\mathcal{D})))) = \mathfrak{h}(Cl(\mathfrak{h}^{-1}(\mathcal{D})))$. Therefore, $\mathfrak{h}^{-1}(\omega_p Cl(\mathcal{D})) \subseteq Cl(\mathfrak{h}^{-1}(\mathcal{D}))$.

(2) \Rightarrow (3) Let $\mathcal{U} \subseteq Y$. Then, $Y - \mathcal{U} \subseteq Y$, by (2), $\mathfrak{h}^{-1}(\omega_p Cl(Y - \mathcal{U})) \subseteq Cl(\mathfrak{h}^{-1}(Y - \mathcal{U}))$. Thus, $X - \mathfrak{h}^{-1}(\omega_p Int(\mathcal{U})) \subseteq X - Int(\mathfrak{h}^{-1}(\mathcal{U}))$, this means that $Int(\mathfrak{h}^{-1}(\mathcal{U})) \subseteq \mathfrak{h}^{-1}(\omega_p Int(\mathcal{U}))$.

 $(3) \Rightarrow (1)$ Let \mathcal{D} be a closed subset of X. To show that, \mathfrak{h} is $\omega_p - closed$. Since, $\mathfrak{h}(X - \mathcal{D}) \subseteq Y$, so by (3), $Int((\mathfrak{h}(X - \mathcal{D}))) \subseteq \mathfrak{h}^{-1}(\omega_p Int(\mathfrak{h}(X - \mathcal{D})))$. By bijective of $\mathfrak{h}, X - Cl(\mathcal{D}) \subseteq X - \mathfrak{h}^{-1}(\omega_p Cl(\mathfrak{h}(\mathcal{D})))$, then $\omega_p Cl(\mathfrak{h}(\mathcal{D})) \subseteq (\mathfrak{h}(Cl(\mathcal{D})))$. But \mathcal{D} is closed, thus $\omega_p Cl(\mathfrak{h}(\mathcal{D})) \subseteq \mathfrak{h}(\mathcal{D})$, and $\mathfrak{h}(\mathcal{D})$ is closed in Y. Hence, \mathfrak{h} is $\omega_p - closed$.

Theorem 5.4. Let $\mathfrak{h}: X \to Y$ be an ω_p - closed Fun. If \mathcal{K} is a closed subspace in X, then the restriction

Fun $\mathfrak{h}_{/\mathcal{K}} : \mathcal{K} \to Y$ is $\omega_p - closed$.

Proof: Let \mathcal{D} be any *closed* subset of \mathcal{K} . Since \mathcal{K} is *closed* in X, implies that \mathcal{D} is *closed* in X. *By hypothesis*,

 $\mathfrak{h}(\mathcal{D})$ is $\omega_p - closed$ in Y. But, $\mathfrak{h}_{/\mathcal{K}}(\mathcal{D}) = \mathfrak{h}(\mathcal{D})$. Therefore, $\mathfrak{h}_{/\mathcal{K}}$ is $\omega_p - closed$ Fun.

Theorem 5.5. Let $\zeta: X \to Y$ be a closed Fun and $\eta: Y \to Z$ be an ω_p - closed Fun. Then, $\eta \circ \zeta$ is an ω_p - closed Fun.

Proof: Let \mathcal{D} be any closed subset of X. Then, by hypothesis, $\zeta(\mathcal{D})$ is closed in Y. Since η is ω_p - closed, thus $\eta(\zeta(\mathcal{D}))$ is an ω_p - closed set in Z. Therefore, $\eta \circ \zeta$ is ω_p - closed.

Theorem 5.6. The following conditions are true, for the Funs $g: X \to Y$ and $\mathfrak{h}: Y \to Z$:

1. If $\mathfrak{h} \circ \mathfrak{g}$ is a closed Fun and \mathfrak{h} is an injective ω_p – continuous Fun, then \mathfrak{g} is ω_p – closed.

2. If $\mathfrak{h} \circ \mathfrak{g}$ is an ω_p - closed Fun and \mathfrak{g} is an surjective continuous Fun, then \mathfrak{h} is ω_p - closed. Proof.

1. Let D be any closed subset of X. Then, by hypothesis, $\mathfrak{h}(\mathfrak{g}(D))$ is closed in Z. Since \mathfrak{h} is *injective*

 $\omega_p - \text{continuous}, \mathfrak{h}^{-1}(\mathfrak{h}(\mathfrak{g}(\mathcal{D}))) = \mathfrak{g}(\mathcal{D}) \text{ is } \omega_p - \text{closed in } Y. \text{ Hence, } \mathfrak{g} \text{ is } \omega_p - \text{open.}$

2. Suppose \mathcal{D} is a closed subset of Y. Since g is continuous, then, $g^{-1}(\mathcal{D})$ is closed in X. By hypothesis,

 $\mathfrak{h}(\mathfrak{g}(\mathfrak{g}^{-1}(\mathcal{D}))) = \mathfrak{h}(\mathcal{D})$ is an ω_p - closed set in Z. Therefore, \mathfrak{h} is ω_p - closed.

Theorem 5.7. The *following* conditions are *equivalent*, for a *bijective Fun* $\mathfrak{h}: X \to Y$:

- 1. h is ω_p continuous;
- 2. $h \text{ is } \omega_p open;$
- 3. $h ext{ is } \omega_p closed$.

Proof:

(1) \Rightarrow (2) Let \mathcal{D} be any open set in X. Since \mathfrak{h}^{-1} is $\omega_p - \text{continuous}$, thus, $(\mathfrak{h}^{-1})^{-1}(\mathcal{D}) = \mathfrak{h}(\mathcal{D})$ is $\omega_p - ope$

in Y. Therefore, \mathfrak{h} is $\omega_p - open$.

(2) \Rightarrow (3) Let \mathfrak{h} be an ω_p – open Fun, and \mathcal{D} be a closed set in X. Then, X – \mathcal{D} is open. By hypothesis, $\mathfrak{h}(X - \mathcal{D}) = Y - \mathfrak{h}(\mathcal{D})$ is ω_p – open in Y. Thus, $\mathfrak{h}(\mathcal{D})$ is ω_p – closed.

(3) ⇒ (1) Let D be any open set in X. Then, X – D is closed. Since h is bijective and by (3), h (X – D) =
Y – h(D) is ω_p – closed in Y. Thus, (h⁻¹)⁻¹(D) = h (D) is ω_p – open. Hence, h⁻¹ is ω_p – open.

6. CONCLUSION:

In this paper, we showed that every $\omega_p - open$ set in locally countable space is open. We used the notions of $\omega_p - open$ and $\omega_p - closed$ sets to describe $\omega_p - open$ and $\omega_p - closed$ Fun. Also, there is a relationship between open and preopen Funs via $\omega_p - open$ Funs. We acquired some fundamental theorems and properties of these Funs. However, there are combined $\omega_p - continuous$ Funs with $\omega_p - open$ and $\omega_p - closed$ Fun.

ACKNOWLEDGMENTS

I'd like to thank the referees for their constructive feedback. as well as manuscript suggestions.

REFERENCES

- 1. Darwesh, H. M. 2013. Between Preopen and Open Sets in Topological Spaces, *Thai Journal of Mathematics* 11(1), 143-55.
- 2. Levine, N. 1963. Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly, 70, 36-41.
- 3. Mashhour, A. S., Abd El-Monsef, M. E. and El-Deep S. N. 1982. On Precontinuous and Weak Precontinuous Mappings, *Proc. Math. Phys. Soc. Egypt*, 53, 47–53.
- 4. Mashhour, A. S., Hassanien I. A. and EL-Deeb S. N. 1983. α Continuousand α Open Mappings, *Acta Mathematica Hungarica*, 41, 213–218.
- 5. Abd EL-Monsef, M. E., El-Deeb S. N. and Mahmoud R. A. 1983. β –Open Sets and β –Continuous Mappings, *Bulletin* of the Faculty of Science A. Physics and Mathematics, 12, 77–90.
- 6. El-Atik, A. A. 1997. A Study on Some Types of Mappings on Topological Spaces, M.Sc. Thesis, Tanta Uni., Egypt.
- Raychaudhuri, S. and Mukherjee, N. 1993. On δ Almost Continuity and δ Preopen Sets, Bulletin of the Institute of Mathematics Academia Sinica, 21, 357–366.
- 8. Stone, M. 1937. Applications of The Theory of Boolean Ring to General Topology, Trans. Amer. Math. Soc., 41, 375-481.
- 9. Njastad, O. 1965. On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics, 15, 961-970.
- 10. Velicko, N. V. 1968. H Closed Topological Spaces, Transactions of the American Mathematical Society, 78, 103-118.
- 11. Hdeib, H. Z. 1982. ω Closed Mapping, Revista Colombiana de Mathematics, 16, 65–78.
- 12. Biswas, N. 1969. On Some Mappings in Topological Spaces, Bulletin of Calcutta Mathematical Society, 61, 127-135.
- 13. Sharma, J. N. 1979, *Krishna's Topology*, Krishna Prakashan Media 1sted., India.
- 14. Al-Zoubi, K. and Al-Nashef, B. 2003. The Topology of ω Open Subsets, Al-Manarah J., 9, 169-179.
- 15. Reilly, I. L. and Vamanamurthy M. K. 1990. On Some Questions Concerning Preopen Sets, *Kyungpook Math. J.*, 30, 87-93.
- 16. Darwesh, H. M. 2009. Some Types of Separation Axioms and Dimension Functions in Topological Spaces, PhD thesis, Sulaimani University, Sulaimani Kurdistan Region.